-
Notifications
You must be signed in to change notification settings - Fork 10
/
inference_batch.py
173 lines (142 loc) · 7.22 KB
/
inference_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import random
from transformers import CLIPModel, CLIPProcessor
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
from tqdm.auto import tqdm
from functools import partial
import os
import pickle
import numpy as np
import torch
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from inference import load_ckpt, prepare_batch, alpha_generator, set_alpha_scale
import inference
device = "cuda"
inference.device = device
version = "openai/clip-vit-large-patch14"
prepare_batch_model = CLIPModel.from_pretrained(version).to(device)
prepare_batch_processor = CLIPProcessor.from_pretrained(version)
inference.clip_text_feature_dict = inference.load_clip_text_cache(device)
@torch.no_grad()
def run_batch(meta, config, starting_noise=None):
# - - - - - prepare models - - - - - #
print(f"Loading ckpt from {meta[0]['ckpt']}")
model, autoencoder, text_encoder, diffusion, config = load_ckpt(meta[0]["ckpt"])
if args.half:
model = model.half()
autoencoder = autoencoder.half()
text_encoder = text_encoder.half()
diffusion = diffusion.half()
grounding_tokenizer_input = instantiate_from_config(config['grounding_tokenizer_input'])
model.grounding_tokenizer_input = grounding_tokenizer_input
grounding_downsampler_input = None
if "grounding_downsampler_input" in config:
grounding_downsampler_input = instantiate_from_config(config['grounding_downsampler_input'])
# - - - - - update config from args - - - - - #
config.update(vars(args))
config = OmegaConf.create(config)
if args.no_overwrite:
meta = [m for m in meta if not os.path.exists(os.path.join(args.folder, m["save_folder_name"], m['file_name']))]
for i in tqdm(range(len(meta))):
# - -` - - - prepare batch - - - - - #
batch = prepare_batch(meta[i], config.batch_size, model=prepare_batch_model, processor=prepare_batch_processor,
device=device, half=args.half)
# - - - - - generate prompt context - - - - - #
context = text_encoder.encode([meta[i]["prompt"]] * config.batch_size)
if args.negative_prompt is not None:
uc = text_encoder.encode(config.batch_size * [args.negative_prompt])
else:
uc = text_encoder.encode(config.batch_size * [""])
# - - - - - sampler - - - - - #
alpha_generator_func = partial(alpha_generator, type=meta[i].get("alpha_type"))
if config.no_plms:
sampler = DDIMSampler(diffusion, model, alpha_generator_func=alpha_generator_func,
set_alpha_scale=set_alpha_scale)
steps = 250
else:
sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func,
set_alpha_scale=set_alpha_scale)
steps = 50
# - - - - - inpainting related - - - - - #
inpainting_mask = z0 = None # used for replacing known region in diffusion process
inpainting_extra_input = None # used as model input
# - - - - - input for interactdiffusion - - - - - #
grounding_input = grounding_tokenizer_input.prepare(batch)
grounding_extra_input = None
if grounding_downsampler_input != None:
grounding_extra_input = grounding_downsampler_input.prepare(batch)
input = dict(
x=starting_noise,
timesteps=None,
context=context,
grounding_input=grounding_input,
inpainting_extra_input=inpainting_extra_input,
grounding_extra_input=grounding_extra_input,
)
# - - - - - start sampling - - - - - #
shape = (config.batch_size, model.in_channels, model.image_size, model.image_size)
samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=config.guidance_scale,
mask=inpainting_mask, x0=z0)
samples_fake = autoencoder.decode(samples_fake)
# - - - - - save - - - - - #
output_folder = os.path.join(args.folder, meta[i]["save_folder_name"])
os.makedirs(output_folder, exist_ok=True)
start = len(os.listdir(output_folder))
image_ids = list(range(start, start + config.batch_size))
for image_id, sample in zip(image_ids, samples_fake):
img_name = meta[i]['file_name']
sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
sample = sample.cpu().numpy().transpose(1, 2, 0) * 255
sample = Image.fromarray(sample.astype(np.uint8))
sample.save(os.path.join(output_folder, img_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--folder", type=str, default="generation_samples", help="root folder for output")
parser.add_argument("--batch_size", type=int, default=1, help="")
parser.add_argument("--no_plms", action='store_true', help="use DDIM instead. WARNING: I did not test the code yet")
parser.add_argument("--guidance_scale", type=float, default=7.5, help="")
parser.add_argument("--negative_prompt", type=str,
default='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits,'
' cropped, worst quality, low quality',
help="negative prompt")
parser.add_argument("--no-overwrite", action="store_true", help="do not overwrite")
parser.add_argument("--seed", type=int, default=489)
parser.add_argument("--scheduled-sampling", type=float, default=1.0)
parser.add_argument("--res", type=str, default="hico", choices=["hico", "2in1"])
parser.add_argument("--half", action='store_true', help="use 16 bit")
args = parser.parse_args()
assert args.batch_size == 1, 'now only support bs=1, because every image saved with same name'
if args.res == "hico":
res_path = "DATA/hico_det_test.pkl"
else:
raise ValueError(f"invalid res type: {args.res}")
print(f"Loading res type {args.res} from {res_path}")
res = pickle.load(open(res_path, "rb"))
meta_list_new = []
for r in res: # [:2]
meta_list_new.append(dict(
ckpt="ckpt.pth",
prompt=r["prompt"],
subject_phrases=r["subject_phrases"],
object_phrases=r["object_phrases"],
action_phrases=r['action_phrases'],
subject_boxes=r['subject_boxes'],
object_boxes=r['object_boxes'],
alpha_type=[args.scheduled_sampling, 0.0, 1-args.scheduled_sampling],
save_folder_name=r['save_folder_name'],
img_id=r["img_id"],
file_name=r['file_name']
))
print(f"scheduled sampling: {args.scheduled_sampling}, seed: {args.seed}"
f" precision:{'half' if args.half else 'full'}")
assert 1 >= args.scheduled_sampling >= 0, "scheduled sampling must be within 0 to 1"
starting_noise = torch.randn(args.batch_size, 4, 64, 64).to(device)
starting_noise = None
# ------------- seeding -------------
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
run_batch(meta_list_new, args, starting_noise)