Skip to content
forked from robocin/rSoccer

Using '🎳 Environments for Reinforcement Learning' for Simulating a Monte Carlo Localization Algorithm Based on Real Data

License

Notifications You must be signed in to change notification settings

jgocm/rSoccer-MCL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robocup SSL OpenAi gym environments

Requirements

Compile protobuf files

$ sudo apt-get install libprotobuf-dev protobuf-compiler -y
$ cd gym_ssl/grsim_ssl/Communication/pb/proto
$ protoc --python_out=../ *.proto

Fix protobuf compiled files from relative reference to absolute

On file gym_ssl/grsim_ssl/Communication/pb/messages_robocup_ssl_wrapper_pb2.py:

'before:'
15 - import messages_robocup_ssl_detection_pb2 as messages__robocup__ssl__detection__pb2
16 - import messages_robocup_ssl_geometry_pb2 as messages__robocup__ssl__geometry__pb2

'after:'
15 + import gym_ssl.grsim_ssl.Communication.pb.messages_robocup_ssl_detection_pb2 as messages__robocup__ssl__detection__pb2
16 + import gym_ssl.grsim_ssl.Communication.pb.messages_robocup_ssl_geometry_pb2 as messages__robocup__ssl__geometry__pb2

On file gym_ssl/grsim_ssl/Communication/pb/grSim_Packet_pb2.py:

'before:'
15 - import grSim_Commands_pb2 as grSim__Commands__pb2
16 - import grSim_Replacement_pb2 as grSim__Replacement__pb2
'after:'
15 + import gym_ssl.grsim_ssl.Communication.pb.grSim_Commands_pb2 as grSim__Commands__pb2
16 + import gym_ssl.grsim_ssl.Communication.pb.grSim_Replacement_pb2 as grSim__Replacement__pb2

Install environments

$ pip install -e .

Available Envs

  • grSimSSLPenalty-v0

Example code

import gym
import gym_ssl

# Using penalty env
env = gym.make('grSimSSLPenalty-v0')

env.reset()
# Run for 1 episode and print reward at the end
for i in range(1):
    done = False
    while not done:
        action = env.action_space.sample()
        next_state, reward, done, _ = env.step(action)
    print(reward)

About

Using '🎳 Environments for Reinforcement Learning' for Simulating a Monte Carlo Localization Algorithm Based on Real Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%