forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
indices.jl
535 lines (442 loc) · 19.8 KB
/
indices.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Dims{N}
An `NTuple` of `N` `Int`s used to represent the dimensions
of an [`AbstractArray`](@ref).
"""
Dims{N} = NTuple{N,Int}
DimsInteger{N} = NTuple{N,Integer}
Indices{N} = NTuple{N,AbstractUnitRange}
## Traits for array types ##
abstract type IndexStyle end
"""
IndexLinear()
Subtype of [`IndexStyle`](@ref) used to describe arrays which
are optimally indexed by one linear index.
A linear indexing style uses one integer index to describe the position in the array
(even if it's a multidimensional array) and column-major
ordering is used to efficiently access the elements. This means that
requesting [`eachindex`](@ref) from an array that is `IndexLinear` will return
a simple one-dimensional range, even if it is multidimensional.
A custom array that reports its `IndexStyle` as `IndexLinear` only needs
to implement indexing (and indexed assignment) with a single `Int` index;
all other indexing expressions — including multidimensional accesses — will
be recomputed to the linear index. For example, if `A` were a `2×3` custom
matrix with linear indexing, and we referenced `A[1, 3]`, this would be
recomputed to the equivalent linear index and call `A[5]` since `1 + 2*(3 - 1) = 5`.
See also [`IndexCartesian`](@ref).
"""
struct IndexLinear <: IndexStyle end
"""
IndexCartesian()
Subtype of [`IndexStyle`](@ref) used to describe arrays which
are optimally indexed by a Cartesian index. This is the default
for new custom [`AbstractArray`](@ref) subtypes.
A Cartesian indexing style uses multiple integer indices to describe the position in
a multidimensional array, with exactly one index per dimension. This means that
requesting [`eachindex`](@ref) from an array that is `IndexCartesian` will return
a range of [`CartesianIndices`](@ref).
A `N`-dimensional custom array that reports its `IndexStyle` as `IndexCartesian` needs
to implement indexing (and indexed assignment) with exactly `N` `Int` indices;
all other indexing expressions — including linear indexing — will
be recomputed to the equivalent Cartesian location. For example, if `A` were a `2×3` custom
matrix with cartesian indexing, and we referenced `A[5]`, this would be
recomputed to the equivalent Cartesian index and call `A[1, 3]` since `5 = 1 + 2*(3 - 1)`.
It is significantly more expensive to compute Cartesian indices from a linear index than it is
to go the other way. The former operation requires division — a very costly operation — whereas
the latter only uses multiplication and addition and is essentially free. This asymmetry means it
is far more costly to use linear indexing with an `IndexCartesian` array than it is to use
Cartesian indexing with an `IndexLinear` array.
See also [`IndexLinear`](@ref).
"""
struct IndexCartesian <: IndexStyle end
"""
IndexStyle(A)
IndexStyle(typeof(A))
`IndexStyle` specifies the "native indexing style" for array `A`. When
you define a new [`AbstractArray`](@ref) type, you can choose to implement
either linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.
If you decide to only implement linear indexing, then you must set this trait for your array
type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()
The default is [`IndexCartesian()`](@ref).
Julia's internal indexing machinery will automatically (and invisibly)
recompute all indexing operations into the preferred style. This allows users
to access elements of your array using any indexing style, even when explicit
methods have not been provided.
If you define both styles of indexing for your `AbstractArray`, this
trait can be used to select the most performant indexing style. Some
methods check this trait on their inputs, and dispatch to different
algorithms depending on the most efficient access pattern. In
particular, [`eachindex`](@ref) creates an iterator whose type depends
on the setting of this trait.
"""
IndexStyle(A::AbstractArray) = IndexStyle(typeof(A))
IndexStyle(::Type{Union{}}, slurp...) = IndexLinear()
IndexStyle(::Type{<:AbstractArray}) = IndexCartesian()
IndexStyle(::Type{<:Array}) = IndexLinear()
IndexStyle(::Type{<:AbstractRange}) = IndexLinear()
IndexStyle(A::AbstractArray, B::AbstractArray) = IndexStyle(IndexStyle(A), IndexStyle(B))
IndexStyle(A::AbstractArray, B::AbstractArray...) = IndexStyle(IndexStyle(A), IndexStyle(B...))
IndexStyle(::IndexLinear, ::IndexLinear) = IndexLinear()
IndexStyle(::IndexStyle, ::IndexStyle) = IndexCartesian()
# array shape rules
promote_shape(::Tuple{}, ::Tuple{}) = ()
# Consistent error message for promote_shape mismatch, hiding type details like
# OneTo. When b ≡ nothing, it is omitted; i can be supplied for an index.
function throw_promote_shape_mismatch(a::Tuple, b::Union{Nothing,Tuple}, i = nothing)
if a isa Tuple{Vararg{Base.OneTo}} && (b === nothing || b isa Tuple{Vararg{Base.OneTo}})
a = map(lastindex, a)::Dims
b === nothing || (b = map(lastindex, b)::Dims)
end
_has_axes = !(a isa Dims && (b === nothing || b isa Dims))
if _has_axes
_normalize(d) = map(x -> firstindex(x):lastindex(x), d)
a = _normalize(a)
b === nothing || (b = _normalize(b))
_things = "axes "
else
_things = "size "
end
msg = IOBuffer()
print(msg, "a has ", _things)
print(msg, a)
if b ≢ nothing
print(msg, ", b has ", _things)
print(msg, b)
end
if i ≢ nothing
print(msg, ", mismatch at dim ", i)
end
throw(DimensionMismatch(String(take!(msg))))
end
function promote_shape(a::Tuple{Int,}, b::Tuple{Int,})
a[1] != b[1] && throw_promote_shape_mismatch(a, b)
return a
end
function promote_shape(a::Tuple{Int,Int}, b::Tuple{Int,})
(a[1] != b[1] || a[2] != 1) && throw_promote_shape_mismatch(a, b)
return a
end
promote_shape(a::Tuple{Int,}, b::Tuple{Int,Int}) = promote_shape(b, a)
function promote_shape(a::Tuple{Int, Int}, b::Tuple{Int, Int})
(a[1] != b[1] || a[2] != b[2]) && throw_promote_shape_mismatch(a, b)
return a
end
"""
promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing singleton dimensions, and return
whichever shape has more dimensions.
# Examples
```jldoctest
julia> a = fill(1, (3,4,1,1,1));
julia> b = fill(1, (3,4));
julia> promote_shape(a,b)
(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))
julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))
(2, 3, 1, 4, 1)
```
"""
function promote_shape(a::Dims, b::Dims)
if length(a) < length(b)
return promote_shape(b, a)
end
for i=1:length(b)
a[i] != b[i] && throw_promote_shape_mismatch(a, b, i)
end
for i=length(b)+1:length(a)
a[i] != 1 && throw_promote_shape_mismatch(a, nothing, i)
end
return a
end
function promote_shape(a::AbstractArray, b::AbstractArray)
promote_shape(axes(a), axes(b))
end
function promote_shape(a::Indices, b::Indices)
if length(a) < length(b)
return promote_shape(b, a)
end
for i=1:length(b)
a[i] != b[i] && throw_promote_shape_mismatch(a, b, i)
end
for i=length(b)+1:length(a)
a[i] != 1:1 && throw_promote_shape_mismatch(a, nothing, i)
end
return a
end
function throw_setindex_mismatch(X, I)
if length(I) == 1
throw(DimensionMismatch("tried to assign $(length(X)) elements to $(I[1]) destinations"))
else
throw(DimensionMismatch("tried to assign $(dims2string(size(X))) array to $(dims2string(I)) destination"))
end
end
# check for valid sizes in A[I...] = X where X <: AbstractArray
# we want to allow dimensions that are equal up to permutation, but only
# for permutations that leave array elements in the same linear order.
# those are the permutations that preserve the order of the non-singleton
# dimensions.
function setindex_shape_check(X::AbstractArray, I::Integer...)
li = ndims(X)
lj = length(I)
i = j = 1
while true
ii = length(axes(X,i))
jj = I[j]
if i == li || j == lj
while i < li
i += 1
ii *= length(axes(X,i))
end
while j < lj
j += 1
jj *= I[j]
end
if ii != jj
throw_setindex_mismatch(X, I)
end
return
end
if ii == jj
i += 1
j += 1
elseif ii == 1
i += 1
elseif jj == 1
j += 1
else
throw_setindex_mismatch(X, I)
end
end
end
setindex_shape_check(X::AbstractArray) =
(length(X)==1 || throw_setindex_mismatch(X,()))
setindex_shape_check(X::AbstractArray, i::Integer) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check(X::AbstractArray{<:Any, 0}, i::Integer...) =
(length(X) == prod(i) || throw_setindex_mismatch(X, i))
setindex_shape_check(X::AbstractArray{<:Any,1}, i::Integer) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check(X::AbstractArray{<:Any,1}, i::Integer, j::Integer) =
(length(X)==i*j || throw_setindex_mismatch(X, (i,j)))
function setindex_shape_check(X::AbstractArray{<:Any,2}, i::Integer, j::Integer)
if length(X) != i*j
throw_setindex_mismatch(X, (i,j))
end
sx1 = length(axes(X,1))
if !(i == 1 || i == sx1 || sx1 == 1)
throw_setindex_mismatch(X, (i,j))
end
end
setindex_shape_check(::Any...) =
throw(ArgumentError("indexed assignment with a single value to possibly many locations is not supported; perhaps use broadcasting `.=` instead?"))
# convert to a supported index type (array or Int)
"""
to_index(A, i)
Convert index `i` to an `Int` or array of indices to be used as an index into array `A`.
Custom array types may specialize `to_index(::CustomArray, i)` to provide
special indexing behaviors. Note that some index types (like `Colon`) require
more context in order to transform them into an array of indices; those get
converted in the more complicated `to_indices` function. By default, this
simply calls the generic `to_index(i)`. This must return either an `Int` or an
`AbstractArray` of scalar indices that are supported by `A`.
"""
to_index(A, i) = to_index(i)
# This is ok for Array because values larger than
# typemax(Int) will BoundsError anyway
to_index(A::Array, i::UInt) = reinterpret(Int, i)
"""
to_index(i)
Convert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.
Custom index types may specialize `to_index(::CustomIndex)` to provide special
indexing behaviors. This must return either an `Int` or an `AbstractArray` of
`Int`s.
"""
to_index(i::Integer) = convert(Int,i)::Int
to_index(i::Bool) = throw(ArgumentError("invalid index: $i of type Bool"))
to_index(I::AbstractArray{Bool}) = LogicalIndex(I)
to_index(I::AbstractArray) = I
to_index(I::AbstractArray{Union{}}) = I
to_index(I::AbstractArray{<:Union{AbstractArray, Colon}}) =
throw(ArgumentError("invalid index: $(limitrepr(I)) of type $(typeof(I))"))
to_index(::Colon) = throw(ArgumentError("colons must be converted by to_indices(...)"))
to_index(i) = throw(ArgumentError("invalid index: $(limitrepr(i)) of type $(typeof(i))"))
# The general to_indices is mostly defined in multidimensional.jl, but this
# definition is required for bootstrap:
"""
to_indices(A, I::Tuple)
Convert the tuple `I` to a tuple of indices for use in indexing into array `A`.
The returned tuple must only contain either `Int`s or `AbstractArray`s of
scalar indices that are supported by array `A`. It will error upon encountering
a novel index type that it does not know how to process.
For simple index types, it defers to the unexported `Base.to_index(A, i)` to
process each index `i`. While this internal function is not intended to be
called directly, `Base.to_index` may be extended by custom array or index types
to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into
which they index. To support those cases, `to_indices(A, I)` calls
`to_indices(A, axes(A), I)`, which then recursively walks through both the
given tuple of indices and the dimensional indices of `A` in tandem. As such,
not all index types are guaranteed to propagate to `Base.to_index`.
# Examples
```jldoctest
julia> A = zeros(1,2,3,4);
julia> to_indices(A, (1,1,2,2))
(1, 1, 2, 2)
julia> to_indices(A, (1,1,2,20)) # no bounds checking
(1, 1, 2, 20)
julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index
(1, 2, 3, 4)
julia> to_indices(A, ([1,1], 1:2, 3, 4))
([1, 1], 1:2, 3, 4)
julia> to_indices(A, (1,2)) # no shape checking
(1, 2)
```
"""
to_indices(A, I::Tuple) = (@inline; to_indices(A, axes(A), I))
to_indices(A, I::Tuple{Any}) = (@inline; to_indices(A, (eachindex(IndexLinear(), A),), I))
# In simple cases, we know that we don't need to use axes(A), optimize those.
# Having this here avoids invalidations from multidimensional.jl: to_indices(A, I::Tuple{Vararg{Union{Integer, CartesianIndex}}})
to_indices(A, I::Tuple{}) = ()
to_indices(A, I::Tuple{Vararg{Int}}) = I
to_indices(A, I::Tuple{Vararg{Integer}}) = (@inline; to_indices(A, (), I))
to_indices(A, inds, ::Tuple{}) = ()
to_indices(A, inds, I::Tuple{Any, Vararg}) =
(@inline; (to_index(A, I[1]), to_indices(A, safe_tail(inds), tail(I))...))
"""
Slice(indices)
Represent an AbstractUnitRange of indices as a vector of the indices themselves,
with special handling to signal they represent a complete slice of a dimension (:).
Upon calling `to_indices`, Colons are converted to Slice objects to represent
the indices over which the Colon spans. Slice objects are themselves unit
ranges with the same indices as those they wrap. This means that indexing into
Slice objects with an integer always returns that exact integer, and they
iterate over all the wrapped indices, even supporting offset indices.
"""
struct Slice{T<:AbstractUnitRange} <: AbstractUnitRange{Int}
indices::T
end
Slice(S::Slice) = S
Slice{T}(S::Slice) where {T<:AbstractUnitRange} = Slice{T}(T(S.indices))
axes(S::Slice) = (IdentityUnitRange(S.indices),)
axes1(S::Slice) = IdentityUnitRange(S.indices)
axes(S::Slice{<:OneTo}) = (S.indices,)
axes1(S::Slice{<:OneTo}) = S.indices
first(S::Slice) = first(S.indices)
last(S::Slice) = last(S.indices)
size(S::Slice) = (length(S.indices),)
length(S::Slice) = length(S.indices)
getindex(S::Slice, i::Int) = (@inline; @boundscheck checkbounds(S, i); i)
getindex(S::Slice, i::AbstractUnitRange{<:Integer}) = (@inline; @boundscheck checkbounds(S, i); i)
getindex(S::Slice, i::StepRange{<:Integer}) = (@inline; @boundscheck checkbounds(S, i); i)
show(io::IO, r::Slice) = print(io, "Base.Slice(", r.indices, ")")
iterate(S::Slice, s...) = iterate(S.indices, s...)
"""
IdentityUnitRange(range::AbstractUnitRange)
Represent an AbstractUnitRange `range` as an offset vector such that `range[i] == i`.
`IdentityUnitRange`s are frequently used as axes for offset arrays.
"""
struct IdentityUnitRange{T<:AbstractUnitRange} <: AbstractUnitRange{Int}
indices::T
end
IdentityUnitRange(S::IdentityUnitRange) = S
IdentityUnitRange{T}(S::IdentityUnitRange) where {T<:AbstractUnitRange} = IdentityUnitRange{T}(T(S.indices))
# IdentityUnitRanges are offset and thus have offset axes, so they are their own axes
axes(S::IdentityUnitRange) = (S,)
axes1(S::IdentityUnitRange) = S
axes(S::IdentityUnitRange{<:OneTo}) = (S.indices,)
axes1(S::IdentityUnitRange{<:OneTo}) = S.indices
first(S::IdentityUnitRange) = first(S.indices)
last(S::IdentityUnitRange) = last(S.indices)
size(S::IdentityUnitRange) = (length(S.indices),)
length(S::IdentityUnitRange) = length(S.indices)
getindex(S::IdentityUnitRange, i::Int) = (@inline; @boundscheck checkbounds(S, i); i)
getindex(S::IdentityUnitRange, i::AbstractUnitRange{<:Integer}) = (@inline; @boundscheck checkbounds(S, i); i)
getindex(S::IdentityUnitRange, i::StepRange{<:Integer}) = (@inline; @boundscheck checkbounds(S, i); i)
show(io::IO, r::IdentityUnitRange) = print(io, "Base.IdentityUnitRange(", r.indices, ")")
iterate(S::IdentityUnitRange, s...) = iterate(S.indices, s...)
# For OneTo, the values and indices of the values are identical, so this may be defined in Base.
# In general such an indexing operation would produce offset ranges
getindex(S::OneTo, I::IdentityUnitRange{<:AbstractUnitRange{<:Integer}}) = (@inline; @boundscheck checkbounds(S, I); I)
"""
LinearIndices(A::AbstractArray)
Return a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,
holding the linear index of each entry in `A`. Indexing this array with
cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional
array, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s
linear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with
unconventional indexing.
Calling this function is the "safe" way to write algorithms that
exploit linear indexing.
# Examples
```jldoctest
julia> A = fill(1, (5,6,7));
julia> b = LinearIndices(A);
julia> extrema(b)
(1, 210)
```
LinearIndices(inds::CartesianIndices) -> R
LinearIndices(sz::Dims) -> R
LinearIndices((istart:istop, jstart:jstop, ...)) -> R
Return a `LinearIndices` array with the specified shape or [`axes`](@ref).
# Example
The main purpose of this constructor is intuitive conversion
from cartesian to linear indexing:
```jldoctest
julia> linear = LinearIndices((1:3, 1:2))
3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
1 4
2 5
3 6
julia> linear[1,2]
4
```
"""
struct LinearIndices{N,R<:NTuple{N,AbstractUnitRange{Int}}} <: AbstractArray{Int,N}
indices::R
end
convert(::Type{LinearIndices{N,R}}, inds::LinearIndices{N}) where {N,R<:NTuple{N,AbstractUnitRange{Int}}} =
LinearIndices{N,R}(convert(R, inds.indices))::LinearIndices{N,R}
LinearIndices(::Tuple{}) = LinearIndices{0,typeof(())}(())
LinearIndices(inds::NTuple{N,AbstractUnitRange{<:Integer}}) where {N} =
LinearIndices(map(r->convert(AbstractUnitRange{Int}, r), inds))
LinearIndices(inds::NTuple{N,Union{<:Integer,AbstractUnitRange{<:Integer}}}) where {N} =
LinearIndices(map(_convert2ind, inds))
LinearIndices(A::Union{AbstractArray,SimpleVector}) = LinearIndices(axes(A))
_convert2ind(i::Integer) = oneto(i)
_convert2ind(ind::AbstractUnitRange) = first(ind):last(ind)
function indices_promote_type(::Type{Tuple{R1,Vararg{R1,N}}}, ::Type{Tuple{R2,Vararg{R2,N}}}) where {R1,R2,N}
R = promote_type(R1, R2)
return Tuple{R, Vararg{R, N}}
end
promote_rule(::Type{LinearIndices{N,R1}}, ::Type{LinearIndices{N,R2}}) where {N,R1,R2} =
LinearIndices{N,indices_promote_type(R1,R2)}
promote_rule(a::Type{Slice{T1}}, b::Type{Slice{T2}}) where {T1,T2} =
el_same(promote_type(T1, T2), a, b)
promote_rule(a::Type{IdentityUnitRange{T1}}, b::Type{IdentityUnitRange{T2}}) where {T1,T2} =
el_same(promote_type(T1, T2), a, b)
# AbstractArray implementation
IndexStyle(::Type{<:LinearIndices}) = IndexLinear()
axes(iter::LinearIndices) = map(axes1, iter.indices)
size(iter::LinearIndices) = map(length, iter.indices)
isassigned(iter::LinearIndices, i::Int) = checkbounds(Bool, iter, i)
function getindex(iter::LinearIndices, i::Int)
@inline
@boundscheck checkbounds(iter, i)
i
end
function getindex(iter::LinearIndices, i::AbstractRange{<:Integer})
@inline
@boundscheck checkbounds(iter, i)
@inbounds isa(iter, LinearIndices{1}) ? iter.indices[1][i] : (first(iter):last(iter))[i]
end
# More efficient iteration — predominantly for non-vector LinearIndices
# but one-dimensional LinearIndices must be special-cased to support OffsetArrays
iterate(iter::LinearIndices{1}, s...) = iterate(axes1(iter.indices[1]), s...)
iterate(iter::LinearIndices, i=1) = i > length(iter) ? nothing : (i, i+1)
# Needed since firstindex and lastindex are defined in terms of LinearIndices
first(iter::LinearIndices) = 1
first(iter::LinearIndices{1}) = (@inline; first(axes1(iter.indices[1])))
last(iter::LinearIndices) = (@inline; length(iter))
last(iter::LinearIndices{1}) = (@inline; last(axes1(iter.indices[1])))