This repository has been archived by the owner on Oct 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
data_block.py
804 lines (678 loc) · 38.8 KB
/
data_block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
from .torch_core import *
from .basic_data import *
from .layers import *
from numbers import Integral
__all__ = ['ItemList', 'CategoryList', 'MultiCategoryList', 'MultiCategoryProcessor', 'LabelList', 'ItemLists', 'get_files',
'PreProcessor', 'LabelLists', 'FloatList', 'CategoryProcessor', 'EmptyLabelList', 'MixedItem', 'MixedProcessor',
'MixedItemList']
def _decode(df):
return np.array([[df.columns[i] for i,t in enumerate(x) if t==1] for x in df.values], dtype=np.object)
def _maybe_squeeze(arr): return (arr if is1d(arr) else np.squeeze(arr))
def _path_to_same_str(p_fn):
"path -> str, but same on nt+posix, for alpha-sort only"
s_fn = str(p_fn)
s_fn = s_fn.replace('\\','.')
s_fn = s_fn.replace('/','.')
return s_fn
def _get_files(parent, p, f, extensions):
p = Path(p)#.relative_to(parent)
if isinstance(extensions,str): extensions = [extensions]
low_extensions = [e.lower() for e in extensions] if extensions is not None else None
res = [p/o for o in f if not o.startswith('.')
and (extensions is None or f'.{o.split(".")[-1].lower()}' in low_extensions)]
return res
def get_files(path:PathOrStr, extensions:Collection[str]=None, recurse:bool=False,
include:Optional[Collection[str]]=None, presort:bool=False)->FilePathList:
"Return list of files in `path` that have a suffix in `extensions`; optionally `recurse`."
if recurse:
res = []
for i,(p,d,f) in enumerate(os.walk(path)):
# skip hidden dirs
if include is not None and i==0: d[:] = [o for o in d if o in include]
else: d[:] = [o for o in d if not o.startswith('.')]
res += _get_files(path, p, f, extensions)
if presort: res = sorted(res, key=lambda p: _path_to_same_str(p), reverse=False)
return res
else:
f = [o.name for o in os.scandir(path) if o.is_file()]
res = _get_files(path, path, f, extensions)
if presort: res = sorted(res, key=lambda p: _path_to_same_str(p), reverse=False)
return res
class PreProcessor():
"Basic class for a processor that will be applied to items at the end of the data block API."
def __init__(self, ds:Collection=None): self.ref_ds = ds
def process_one(self, item:Any): return item
def process(self, ds:Collection): ds.items = array([self.process_one(item) for item in ds.items])
PreProcessors = Union[PreProcessor, Collection[PreProcessor]]
fastai_types[PreProcessors] = 'PreProcessors'
class ItemList():
"A collection of items with `__len__` and `__getitem__` with `ndarray` indexing semantics."
_bunch,_processor,_label_cls,_square_show,_square_show_res = DataBunch,None,None,False,False
def __init__(self, items:Iterator, path:PathOrStr='.', label_cls:Callable=None, inner_df:Any=None,
processor:PreProcessors=None, x:'ItemList'=None, ignore_empty:bool=False):
self.path = Path(path)
self.num_parts = len(self.path.parts)
self.items,self.x,self.ignore_empty = items,x,ignore_empty
if not isinstance(self.items,np.ndarray): self.items = array(self.items, dtype=object)
self.label_cls,self.inner_df,self.processor = ifnone(label_cls,self._label_cls),inner_df,processor
self._label_list,self._split = LabelList,ItemLists
self.copy_new = ['x', 'label_cls', 'path']
def __len__(self)->int: return len(self.items) or 1
def get(self, i)->Any:
"Subclass if you want to customize how to create item `i` from `self.items`."
return self.items[i]
def __repr__(self)->str:
items = [self[i] for i in range(min(5,len(self.items)))]
return f'{self.__class__.__name__} ({len(self.items)} items)\n{show_some(items)}\nPath: {self.path}'
def process(self, processor:PreProcessors=None):
"Apply `processor` or `self.processor` to `self`."
if processor is not None: self.processor = processor
self.processor = listify(self.processor)
for p in self.processor: p.process(self)
return self
def process_one(self, item:ItemBase, processor:PreProcessors=None):
"Apply `processor` or `self.processor` to `item`."
if processor is not None: self.processor = processor
self.processor = listify(self.processor)
for p in self.processor: item = p.process_one(item)
return item
def analyze_pred(self, pred:Tensor):
"Called on `pred` before `reconstruct` for additional preprocessing."
return pred
def reconstruct(self, t:Tensor, x:Tensor=None):
"Reconstruct one of the underlying item for its data `t`."
return self[0].reconstruct(t,x) if has_arg(self[0].reconstruct, 'x') else self[0].reconstruct(t)
def new(self, items:Iterator, processor:PreProcessors=None, **kwargs)->'ItemList':
"Create a new `ItemList` from `items`, keeping the same attributes."
processor = ifnone(processor, self.processor)
copy_d = {o:getattr(self,o) for o in self.copy_new}
kwargs = {**copy_d, **kwargs}
return self.__class__(items=items, processor=processor, **kwargs)
def add(self, items:'ItemList'):
self.items = np.concatenate([self.items, items.items], 0)
if self.inner_df is not None and items.inner_df is not None:
self.inner_df = pd.concat([self.inner_df, items.inner_df])
else: self.inner_df = self.inner_df or items.inner_df
return self
def __getitem__(self,idxs:int)->Any:
"returns a single item based if `idxs` is an integer or a new `ItemList` object if `idxs` is a range."
idxs = try_int(idxs)
if isinstance(idxs, Integral): return self.get(idxs)
else: return self.new(self.items[idxs], inner_df=index_row(self.inner_df, idxs))
@classmethod
def from_folder(cls, path:PathOrStr, extensions:Collection[str]=None, recurse:bool=True,
include:Optional[Collection[str]]=None, processor:PreProcessors=None, presort:Optional[bool]=False, **kwargs)->'ItemList':
"""Create an `ItemList` in `path` from the filenames that have a suffix in `extensions`.
`recurse` determines if we search subfolders."""
path = Path(path)
return cls(get_files(path, extensions, recurse=recurse, include=include, presort=presort), path=path, processor=processor, **kwargs)
@classmethod
def from_df(cls, df:DataFrame, path:PathOrStr='.', cols:IntsOrStrs=0, processor:PreProcessors=None, **kwargs)->'ItemList':
"Create an `ItemList` in `path` from the inputs in the `cols` of `df`."
inputs = df.iloc[:,df_names_to_idx(cols, df)]
assert not inputs.isna().any().any(), f"You have NaN values in column(s) {cols} of your dataframe, please fix it."
res = cls(items=_maybe_squeeze(inputs.values), path=path, inner_df=df, processor=processor, **kwargs)
return res
@classmethod
def from_csv(cls, path:PathOrStr, csv_name:str, cols:IntsOrStrs=0, delimiter:str=None, header:str='infer',
processor:PreProcessors=None, **kwargs)->'ItemList':
"""Create an `ItemList` in `path` from the inputs in the `cols` of `path/csv_name`"""
df = pd.read_csv(Path(path)/csv_name, delimiter=delimiter, header=header)
return cls.from_df(df, path=path, cols=cols, processor=processor, **kwargs)
def _relative_item_path(self, i): return self.items[i].relative_to(self.path)
def _relative_item_paths(self): return [self._relative_item_path(i) for i in range_of(self.items)]
def use_partial_data(self, sample_pct:float=0.01, seed:int=None)->'ItemList':
"Use only a sample of `sample_pct`of the full dataset and an optional `seed`."
if seed is not None: np.random.seed(seed)
rand_idx = np.random.permutation(range_of(self))
cut = int(sample_pct * len(self))
return self[rand_idx[:cut]]
def to_text(self, fn:str):
"Save `self.items` to `fn` in `self.path`."
with open(self.path/fn, 'w') as f: f.writelines([f'{o}\n' for o in self._relative_item_paths()])
def filter_by_func(self, func:Callable)->'ItemList':
"Only keep elements for which `func` returns `True`."
self.items = array([o for o in self.items if func(o)])
return self
def filter_by_folder(self, include=None, exclude=None):
"Only keep filenames in `include` folder or reject the ones in `exclude`."
include,exclude = listify(include),listify(exclude)
def _inner(o):
if isinstance(o, Path): n = o.relative_to(self.path).parts[0]
else: n = o.split(os.path.sep)[len(str(self.path).split(os.path.sep))]
if include and not n in include: return False
if exclude and n in exclude: return False
return True
return self.filter_by_func(_inner)
def filter_by_rand(self, p:float, seed:int=None):
"Keep random sample of `items` with probability `p` and an optional `seed`."
if seed is not None: set_all_seed(seed)
return self.filter_by_func(lambda o: rand_bool(p))
def no_split(self):
warn("`no_split` is deprecated, please use `split_none`.")
return self.split_none()
def split_none(self):
"Don't split the data and create an empty validation set."
val = self[[]]
val.ignore_empty = True
return self._split(self.path, self, val)
def split_by_list(self, train, valid):
"Split the data between `train` and `valid`."
return self._split(self.path, train, valid)
def split_by_idxs(self, train_idx, valid_idx):
"Split the data between `train_idx` and `valid_idx`."
return self.split_by_list(self[train_idx], self[valid_idx])
def split_by_idx(self, valid_idx:Collection[int])->'ItemLists':
"Split the data according to the indexes in `valid_idx`."
#train_idx = [i for i in range_of(self.items) if i not in valid_idx]
train_idx = np.setdiff1d(arange_of(self.items), valid_idx)
return self.split_by_idxs(train_idx, valid_idx)
def _get_by_folder(self, name):
return [i for i in range_of(self) if (self.items[i].parts[self.num_parts] if isinstance(self.items[i], Path)
else self.items[i].split(os.path.sep)[0]) == name ]
def split_by_folder(self, train:str='train', valid:str='valid')->'ItemLists':
"Split the data depending on the folder (`train` or `valid`) in which the filenames are."
return self.split_by_idxs(self._get_by_folder(train), self._get_by_folder(valid))
def random_split_by_pct(self, valid_pct:float=0.2, seed:int=None):
warn("`random_split_by_pct` is deprecated, please use `split_by_rand_pct`.")
return self.split_by_rand_pct(valid_pct=valid_pct, seed=seed)
def split_by_rand_pct(self, valid_pct:float=0.2, seed:int=None)->'ItemLists':
"Split the items randomly by putting `valid_pct` in the validation set, optional `seed` can be passed."
if valid_pct==0.: return self.split_none()
if seed is not None: np.random.seed(seed)
rand_idx = np.random.permutation(range_of(self))
cut = int(valid_pct * len(self))
return self.split_by_idx(rand_idx[:cut])
def split_subsets(self, train_size:float, valid_size:float, seed=None) -> 'ItemLists':
"Split the items into train set with size `train_size * n` and valid set with size `valid_size * n`."
assert 0 < train_size < 1
assert 0 < valid_size < 1
assert train_size + valid_size <= 1.
if seed is not None: np.random.seed(seed)
n = len(self.items)
rand_idx = np.random.permutation(range(n))
train_cut, valid_cut = int(train_size * n), int(valid_size * n)
return self.split_by_idxs(rand_idx[:train_cut], rand_idx[-valid_cut:])
def split_by_valid_func(self, func:Callable)->'ItemLists':
"Split the data by result of `func` (which returns `True` for validation set)."
valid_idx = [i for i,o in enumerate(self.items) if func(o)]
return self.split_by_idx(valid_idx)
def split_by_files(self, valid_names:'ItemList')->'ItemLists':
"Split the data by using the names in `valid_names` for validation."
if isinstance(self.items[0], Path): return self.split_by_valid_func(lambda o: o.name in valid_names)
else: return self.split_by_valid_func(lambda o: os.path.basename(o) in valid_names)
def split_by_fname_file(self, fname:PathOrStr, path:PathOrStr=None)->'ItemLists':
"Split the data by using the names in `fname` for the validation set. `path` will override `self.path`."
path = Path(ifnone(path, self.path))
valid_names = loadtxt_str(path/fname)
return self.split_by_files(valid_names)
def split_from_df(self, col:IntsOrStrs=2):
"Split the data from the `col` in the dataframe in `self.inner_df`."
valid_idx = np.where(self.inner_df.iloc[:,df_names_to_idx(col, self.inner_df)])[0]
return self.split_by_idx(valid_idx)
def get_label_cls(self, labels, label_cls:Callable=None, label_delim:str=None, **kwargs):
"Return `label_cls` or guess one from the first element of `labels`."
if label_cls is not None: return label_cls
if self.label_cls is not None: return self.label_cls
if label_delim is not None: return MultiCategoryList
it = index_row(labels,0)
if isinstance(it, (float, np.float32)): return FloatList
if isinstance(try_int(it), (str, Integral)): return CategoryList
if isinstance(it, Collection): return MultiCategoryList
return ItemList #self.__class__
def _label_from_list(self, labels:Iterator, label_cls:Callable=None, from_item_lists:bool=False, **kwargs)->'LabelList':
"Label `self.items` with `labels`."
if not from_item_lists:
raise Exception("Your data isn't split, if you don't want a validation set, please use `split_none`.")
labels = array(labels, dtype=object)
label_cls = self.get_label_cls(labels, label_cls=label_cls, **kwargs)
y = label_cls(labels, path=self.path, **kwargs)
res = self._label_list(x=self, y=y)
return res
def label_from_df(self, cols:IntsOrStrs=1, label_cls:Callable=None, **kwargs):
"Label `self.items` from the values in `cols` in `self.inner_df`."
labels = self.inner_df.iloc[:,df_names_to_idx(cols, self.inner_df)]
assert labels.isna().sum().sum() == 0, f"You have NaN values in column(s) {cols} of your dataframe, please fix it."
if is_listy(cols) and len(cols) > 1 and (label_cls is None or label_cls == MultiCategoryList):
new_kwargs,label_cls = dict(one_hot=True, classes= cols),MultiCategoryList
kwargs = {**new_kwargs, **kwargs}
return self._label_from_list(_maybe_squeeze(labels), label_cls=label_cls, **kwargs)
def label_const(self, const:Any=0, label_cls:Callable=None, **kwargs)->'LabelList':
"Label every item with `const`."
return self.label_from_func(func=lambda o: const, label_cls=label_cls, **kwargs)
def label_empty(self, **kwargs):
"Label every item with an `EmptyLabel`."
kwargs['label_cls'] = EmptyLabelList
return self.label_from_func(func=lambda o: 0., **kwargs)
def label_from_func(self, func:Callable, label_cls:Callable=None, **kwargs)->'LabelList':
"Apply `func` to every input to get its label."
return self._label_from_list([func(o) for o in self.items], label_cls=label_cls, **kwargs)
def label_from_folder(self, label_cls:Callable=None, **kwargs)->'LabelList':
"Give a label to each filename depending on its folder."
return self.label_from_func(func=lambda o: (o.parts if isinstance(o, Path) else o.split(os.path.sep))[-2],
label_cls=label_cls, **kwargs)
def label_from_re(self, pat:str, full_path:bool=False, label_cls:Callable=None, **kwargs)->'LabelList':
"Apply the re in `pat` to determine the label of every filename. If `full_path`, search in the full name."
pat = re.compile(pat)
def _inner(o):
s = str((os.path.join(self.path,o) if full_path else o).as_posix())
res = pat.search(s)
assert res,f'Failed to find "{pat}" in "{s}"'
return res.group(1)
return self.label_from_func(_inner, label_cls=label_cls, **kwargs)
def databunch(self, **kwargs):
"To throw a clear error message when the data wasn't split and labeled."
raise Exception("Your data is neither split nor labeled, can't turn it into a `DataBunch` yet.")
class EmptyLabelList(ItemList):
"Basic `ItemList` for dummy labels."
def get(self, i): return EmptyLabel()
def reconstruct(self, t:Tensor, x:Tensor=None):
if len(t.size()) == 0: return EmptyLabel()
return self.x.reconstruct(t,x) if has_arg(self.x.reconstruct, 'x') else self.x.reconstruct(t)
class CategoryProcessor(PreProcessor):
"`PreProcessor` that create `classes` from `ds.items` and handle the mapping."
def __init__(self, ds:ItemList):
self.create_classes(ds.classes)
self.state_attrs,self.warns = ['classes'],[]
def create_classes(self, classes):
self.classes = classes
if classes is not None: self.c2i = {v:k for k,v in enumerate(classes)}
def generate_classes(self, items):
"Generate classes from `items` by taking the sorted unique values."
return uniqueify(items, sort=True)
def process_one(self,item):
if isinstance(item, EmptyLabel): return item
res = self.c2i.get(item,None)
if res is None: self.warns.append(str(item))
return res
def process(self, ds):
if self.classes is None: self.create_classes(self.generate_classes(ds.items))
ds.classes = self.classes
ds.c2i = self.c2i
super().process(ds)
def __getstate__(self): return {n:getattr(self,n) for n in self.state_attrs}
def __setstate__(self, state:dict):
self.create_classes(state['classes'])
self.state_attrs = state.keys()
for n in state.keys():
if n!='classes': setattr(self, n, state[n])
class CategoryListBase(ItemList):
"Basic `ItemList` for classification."
def __init__(self, items:Iterator, classes:Collection=None, **kwargs):
self.classes=classes
self.filter_missing_y = True
super().__init__(items, **kwargs)
self.copy_new.append('classes')
@property
def c(self): return len(self.classes)
class CategoryList(CategoryListBase):
"Basic `ItemList` for single classification labels."
_processor=CategoryProcessor
def __init__(self, items:Iterator, classes:Collection=None, label_delim:str=None, **kwargs):
super().__init__(items, classes=classes, **kwargs)
self.loss_func = CrossEntropyFlat()
def get(self, i):
o = self.items[i]
if o is None: return None
return Category(o, self.classes[o])
def analyze_pred(self, pred, thresh:float=0.5): return pred.argmax()
def reconstruct(self, t):
return Category(t, self.classes[t])
class MultiCategoryProcessor(CategoryProcessor):
"`PreProcessor` that create `classes` from `ds.items` and handle the mapping."
def __init__(self, ds:ItemList, one_hot:bool=False):
super().__init__(ds)
self.one_hot = one_hot
self.state_attrs.append('one_hot')
def process_one(self,item):
if self.one_hot or isinstance(item, EmptyLabel): return item
res = [super(MultiCategoryProcessor, self).process_one(o) for o in item]
return [r for r in res if r is not None]
def generate_classes(self, items):
"Generate classes from `items` by taking the sorted unique values."
classes = set()
for c in items: classes = classes.union(set(c))
classes = list(classes)
classes.sort()
return classes
class MultiCategoryList(CategoryListBase):
"Basic `ItemList` for multi-classification labels."
_processor=MultiCategoryProcessor
def __init__(self, items:Iterator, classes:Collection=None, label_delim:str=None, one_hot:bool=False, **kwargs):
if label_delim is not None: items = array(csv.reader(items.astype(str), delimiter=label_delim))
super().__init__(items, classes=classes, **kwargs)
if one_hot:
assert classes is not None, "Please provide class names with `classes=...`"
self.processor = [MultiCategoryProcessor(self, one_hot=True)]
self.loss_func = BCEWithLogitsFlat()
self.one_hot = one_hot
self.copy_new += ['one_hot']
def get(self, i):
o = self.items[i]
if o is None: return None
if self.one_hot: return self.reconstruct(o.astype(np.float32))
return MultiCategory(one_hot(o, self.c), [self.classes[p] for p in o], o)
def analyze_pred(self, pred, thresh:float=0.5):
return (pred >= thresh).float()
def reconstruct(self, t):
o = [i for i in range(self.c) if t[i] == 1.]
return MultiCategory(t, [self.classes[p] for p in o], o)
class FloatList(ItemList):
"`ItemList` suitable for storing the floats in items for regression. Will add a `log` if this flag is `True`."
def __init__(self, items:Iterator, log:bool=False, classes:Collection=None, **kwargs):
super().__init__(np.array(items, dtype=np.float32), **kwargs)
self.log = log
self.copy_new.append('log')
self.c = self.items.shape[1] if len(self.items.shape) > 1 else 1
self.loss_func = MSELossFlat()
def get(self, i):
o = super().get(i)
return FloatItem(np.log(o) if self.log else o)
def reconstruct(self,t): return FloatItem(t.numpy())
class ItemLists():
"An `ItemList` for each of `train` and `valid` (optional `test`)."
def __init__(self, path:PathOrStr, train:ItemList, valid:ItemList):
self.path,self.train,self.valid,self.test = Path(path),train,valid,None
if not self.train.ignore_empty and len(self.train.items) == 0:
warn("Your training set is empty. If this is by design, pass `ignore_empty=True` to remove this warning.")
if not self.valid.ignore_empty and len(self.valid.items) == 0:
warn("""Your validation set is empty. If this is by design, use `split_none()`
or pass `ignore_empty=True` when labelling to remove this warning.""")
if isinstance(self.train, LabelList): self.__class__ = LabelLists
def __dir__(self)->List[str]:
default_dir = dir(type(self)) + list(self.__dict__.keys())
add_ons = ['label_const', 'label_empty', 'label_from_df', 'label_from_folder', 'label_from_func',
'label_from_list', 'label_from_re']
return default_dir + add_ons
def __repr__(self)->str:
return f'{self.__class__.__name__};\n\nTrain: {self.train};\n\nValid: {self.valid};\n\nTest: {self.test}'
def __getattr__(self, k):
ft = getattr(self.train, k)
if not isinstance(ft, Callable): return ft
fv = getattr(self.valid, k)
assert isinstance(fv, Callable)
def _inner(*args, **kwargs):
self.train = ft(*args, from_item_lists=True, **kwargs)
assert isinstance(self.train, LabelList)
kwargs['label_cls'] = self.train.y.__class__
self.valid = fv(*args, from_item_lists=True, **kwargs)
self.__class__ = LabelLists
self.process()
return self
return _inner
def __setstate__(self,data:Any): self.__dict__.update(data)
@property
def lists(self):
res = [self.train,self.valid]
if self.test is not None: res.append(self.test)
return res
def label_from_lists(self, train_labels:Iterator, valid_labels:Iterator, label_cls:Callable=None, **kwargs)->'LabelList':
"Use the labels in `train_labels` and `valid_labels` to label the data. `label_cls` will overwrite the default."
label_cls = self.train.get_label_cls(train_labels, label_cls)
self.train = self.train._label_list(x=self.train, y=label_cls(train_labels, **kwargs))
self.valid = self.valid._label_list(x=self.valid, y=self.train.y.new(valid_labels, **kwargs))
self.__class__ = LabelLists
self.process()
return self
def transform(self, tfms:Optional[Tuple[TfmList,TfmList]]=(None,None), **kwargs):
"Set `tfms` to be applied to the xs of the train and validation set."
if not tfms: tfms=(None,None)
assert is_listy(tfms) and len(tfms) == 2, "Please pass a list of two lists of transforms (train and valid)."
self.train.transform(tfms[0], **kwargs)
self.valid.transform(tfms[1], **kwargs)
if self.test: self.test.transform(tfms[1], **kwargs)
return self
def transform_y(self, tfms:Optional[Tuple[TfmList,TfmList]]=(None,None), **kwargs):
"Set `tfms` to be applied to the ys of the train and validation set."
if not tfms: tfms=(None,None)
self.train.transform_y(tfms[0], **kwargs)
self.valid.transform_y(tfms[1], **kwargs)
if self.test: self.test.transform_y(tfms[1], **kwargs)
return self
def databunch(self, **kwargs):
"To throw a clear error message when the data wasn't labeled."
raise Exception("Your data isn't labeled, can't turn it into a `DataBunch` yet!")
class LabelLists(ItemLists):
"A `LabelList` for each of `train` and `valid` (optional `test`)."
def get_processors(self):
"Read the default class processors if none have been set."
procs_x,procs_y = listify(self.train.x._processor),listify(self.train.y._processor)
xp = ifnone(self.train.x.processor, [p(ds=self.train.x) for p in procs_x])
yp = ifnone(self.train.y.processor, [p(ds=self.train.y) for p in procs_y])
return xp,yp
def process(self):
"Process the inner datasets."
xp,yp = self.get_processors()
for ds,n in zip(self.lists, ['train','valid','test']): ds.process(xp, yp, name=n)
#progress_bar clear the outputs so in some case warnings issued during processing disappear.
for ds in self.lists:
if getattr(ds, 'warn', False): warn(ds.warn)
return self
def filter_by_func(self, func:Callable):
for ds in self.lists: ds.filter_by_func(func)
return self
def databunch(self, path:PathOrStr=None, bs:int=64, val_bs:int=None, num_workers:int=defaults.cpus,
dl_tfms:Optional[Collection[Callable]]=None, device:torch.device=None, collate_fn:Callable=data_collate,
no_check:bool=False, **kwargs)->'DataBunch':
"Create an `DataBunch` from self, `path` will override `self.path`, `kwargs` are passed to `DataBunch.create`."
path = Path(ifnone(path, self.path))
data = self.x._bunch.create(self.train, self.valid, test_ds=self.test, path=path, bs=bs, val_bs=val_bs,
num_workers=num_workers, dl_tfms=dl_tfms, device=device, collate_fn=collate_fn, no_check=no_check, **kwargs)
if getattr(self, 'normalize', False):#In case a normalization was serialized
norm = self.normalize
data.normalize((norm['mean'], norm['std']), do_x=norm['do_x'], do_y=norm['do_y'])
data.label_list = self
return data
def add_test(self, items:Iterator, label:Any=None, tfms=None, tfm_y=None):
"Add test set containing `items` with an arbitrary `label`."
# if no label passed, use label of first training item
if label is None: labels = EmptyLabelList([0] * len(items))
else: labels = self.valid.y.new([label] * len(items)).process()
if isinstance(items, MixedItemList): items = self.valid.x.new(items.item_lists, inner_df=items.inner_df).process()
elif isinstance(items, ItemList): items = self.valid.x.new(items.items, inner_df=items.inner_df).process()
else: items = self.valid.x.new(items).process()
self.test = self.valid.new(items, labels, tfms=tfms, tfm_y=tfm_y)
return self
def add_test_folder(self, test_folder:str='test', label:Any=None, tfms=None, tfm_y=None):
"Add test set containing items from `test_folder` and an arbitrary `label`."
# note: labels will be ignored if available in the test dataset
items = self.x.__class__.from_folder(self.path/test_folder)
return self.add_test(items.items, label=label, tfms=tfms, tfm_y=tfm_y)
@classmethod
def load_state(cls, path:PathOrStr, state:dict):
"Create a `LabelLists` with empty sets from the serialized `state`."
path = Path(path)
train_ds = LabelList.load_state(path, state)
valid_ds = LabelList.load_state(path, state)
return LabelLists(path, train=train_ds, valid=valid_ds)
@classmethod
def load_empty(cls, path:PathOrStr, fn:PathOrStr='export.pkl'):
"Create a `LabelLists` with empty sets from the serialized file in `path/fn`."
path = Path(path)
state = torch.load(open(path/fn, 'rb'))
return LabelLists.load_state(path, state)
def _check_kwargs(ds:ItemList, tfms:TfmList, **kwargs):
tfms = listify(tfms)
if (tfms is None or len(tfms) == 0) and len(kwargs) == 0: return
if len(ds.items) >= 1:
x = ds[0]
try: x.apply_tfms(tfms, **kwargs)
except Exception as e:
raise Exception(f"It's not possible to apply those transforms to your dataset:\n {e}")
class LabelList(Dataset):
"A list of inputs `x` and labels `y` with optional `tfms`."
def __init__(self, x:ItemList, y:ItemList, tfms:TfmList=None, tfm_y:bool=False, **kwargs):
self.x,self.y,self.tfm_y = x,y,tfm_y
self.y.x = x
self.item=None
self.transform(tfms, **kwargs)
def __len__(self)->int: return len(self.x) if self.item is None else 1
@contextmanager
def set_item(self,item):
"For inference, will briefly replace the dataset with one that only contains `item`."
self.item = self.x.process_one(item)
yield None
self.item = None
def __repr__(self)->str:
items = [self[i] for i in range(min(5,len(self.items)))]
res = f'{self.__class__.__name__} ({len(self.items)} items)\n'
res += f'x: {self.x.__class__.__name__}\n{show_some([i[0] for i in items])}\n'
res += f'y: {self.y.__class__.__name__}\n{show_some([i[1] for i in items])}\n'
return res + f'Path: {self.path}'
def predict(self, res):
"Delegates predict call on `res` to `self.y`."
return self.y.predict(res)
@property
def c(self): return self.y.c
def new(self, x, y, tfms=None, tfm_y=None, **kwargs)->'LabelList':
tfms,tfm_y = ifnone(tfms, self.tfms),ifnone(tfm_y, self.tfm_y)
if isinstance(x, ItemList):
return self.__class__(x, y, tfms=tfms, tfm_y=tfm_y, **self.tfmargs)
else:
return self.new(self.x.new(x, **kwargs), self.y.new(y, **kwargs), tfms=tfms, tfm_y=tfm_y).process()
def __getattr__(self,k:str)->Any:
x = super().__getattribute__('x')
res = getattr(x, k, None)
if res is not None and k not in ['classes', 'c']: return res
y = super().__getattribute__('y')
res = getattr(y, k, None)
if res is not None: return res
raise AttributeError(k)
def __setstate__(self,data:Any): self.__dict__.update(data)
def __getitem__(self,idxs:Union[int,np.ndarray])->'LabelList':
"return a single (x, y) if `idxs` is an integer or a new `LabelList` object if `idxs` is a range."
idxs = try_int(idxs)
if isinstance(idxs, Integral):
if self.item is None: x,y = self.x[idxs],self.y[idxs]
else: x,y = self.item ,0
if self.tfms or self.tfmargs:
x = x.apply_tfms(self.tfms, is_x=True, **self.tfmargs)
if hasattr(self, 'tfms_y') and self.tfm_y and self.item is None:
y = y.apply_tfms(self.tfms_y, is_x=False, **{**self.tfmargs_y, 'do_resolve':False})
if y is None: y=0
return x,y
else: return self.new(self.x[idxs], self.y[idxs])
def to_df(self)->None:
"Create `pd.DataFrame` containing `items` from `self.x` and `self.y`."
return pd.DataFrame(dict(x=self.x._relative_item_paths(), y=[str(o) for o in self.y]))
def to_csv(self, dest:str)->None:
"Save `self.to_df()` to a CSV file in `self.path`/`dest`."
self.to_df().to_csv(self.path/dest, index=False)
def get_state(self, **kwargs):
"Return the minimal state for export."
state = {'x_cls':self.x.__class__, 'x_proc':self.x.processor,
'y_cls':self.y.__class__, 'y_proc':self.y.processor,
'tfms':self.tfms, 'tfm_y':self.tfm_y, 'tfmargs':self.tfmargs}
if hasattr(self, 'tfms_y'): state['tfms_y'] = self.tfms_y
if hasattr(self, 'tfmargs_y'): state['tfmargs_y'] = self.tfmargs_y
return {**state, **kwargs}
def export(self, fn:PathOrStr, **kwargs):
"Export the minimal state and save it in `fn` to load an empty version for inference."
pickle.dump(self.get_state(**kwargs), open(fn, 'wb'))
@classmethod
def load_empty(cls, path:PathOrStr, fn:PathOrStr):
"Load the state in `fn` to create an empty `LabelList` for inference."
return cls.load_state(path, pickle.load(open(Path(path)/fn, 'rb')))
@classmethod
def load_state(cls, path:PathOrStr, state:dict) -> 'LabelList':
"Create a `LabelList` from `state`."
x = state['x_cls']([], path=path, processor=state['x_proc'], ignore_empty=True)
y = state['y_cls']([], path=path, processor=state['y_proc'], ignore_empty=True)
res = cls(x, y, tfms=state['tfms'], tfm_y=state['tfm_y'], **state['tfmargs']).process()
if state.get('tfms_y', False): res.tfms_y = state['tfms_y']
if state.get('tfmargs_y', False): res.tfmargs_y = state['tfmargs_y']
if state.get('normalize', False): res.normalize = state['normalize']
return res
def process(self, xp:PreProcessor=None, yp:PreProcessor=None, name:str=None):
"Launch the processing on `self.x` and `self.y` with `xp` and `yp`."
self.y.process(yp)
if getattr(self.y, 'filter_missing_y', False):
filt = array([o is None for o in self.y.items])
if filt.sum()>0:
#Warnings are given later since progress_bar might make them disappear.
self.warn = f"You are labelling your items with {self.y.__class__.__name__}.\n"
self.warn += f"Your {name} set contained the following unknown labels, the corresponding items have been discarded.\n"
for p in self.y.processor:
if len(getattr(p, 'warns', [])) > 0:
warnings = list(set(p.warns))
self.warn += ', '.join(warnings[:5])
if len(warnings) > 5: self.warn += "..."
p.warns = []
self.x,self.y = self.x[~filt],self.y[~filt]
self.x.process(xp)
return self
def filter_by_func(self, func:Callable):
filt = array([func(x,y) for x,y in zip(self.x.items, self.y.items)])
self.x,self.y = self.x[~filt],self.y[~filt]
return self
def transform(self, tfms:TfmList, tfm_y:bool=None, **kwargs):
"Set the `tfms` and `tfm_y` value to be applied to the inputs and targets."
_check_kwargs(self.x, tfms, **kwargs)
if tfm_y is None: tfm_y = self.tfm_y
tfms_y = None if tfms is None else list(filter(lambda t: getattr(t, 'use_on_y', True), listify(tfms)))
if tfm_y: _check_kwargs(self.y, tfms_y, **kwargs)
self.tfms,self.tfmargs = tfms,kwargs
self.tfm_y,self.tfms_y,self.tfmargs_y = tfm_y,tfms_y,kwargs
return self
def transform_y(self, tfms:TfmList=None, **kwargs):
"Set `tfms` to be applied to the targets only."
tfms_y = list(filter(lambda t: getattr(t, 'use_on_y', True), listify(self.tfms if tfms is None else tfms)))
tfmargs_y = {**self.tfmargs, **kwargs} if tfms is None else kwargs
_check_kwargs(self.y, tfms_y, **tfmargs_y)
self.tfm_y,self.tfms_y,self.tfmargs_y=True,tfms_y,tfmargs_y
return self
def databunch(self, **kwargs):
"To throw a clear error message when the data wasn't split."
raise Exception("Your data isn't split, if you don't want a validation set, please use `split_none`")
@classmethod
def _databunch_load_empty(cls, path, fname:str='export.pkl'):
"Load an empty `DataBunch` from the exported file in `path/fname` with optional `tfms`."
sd = LabelLists.load_empty(path, fn=fname)
return sd.databunch()
DataBunch.load_empty = _databunch_load_empty
class MixedProcessor(PreProcessor):
def __init__(self, procs:Collection[Union[PreProcessor, Collection[PreProcessor]]]):
self.procs = procs
def process_one(self, item:Any):
res = []
for procs, i in zip(self.procs, item):
for p in procs: i = p.process_one(i)
res.append(i)
return res
def process(self, ds:Collection):
for procs, il in zip(self.procs, ds.item_lists):
for p in procs: p.process(il)
class MixedItem(ItemBase):
def __init__(self, items):
self.obj = items
self.data = [item.data for item in items]
def __repr__(self): return '\n'.join([f'{self.__class__.__name__}'] + [repr(item) for item in self.obj])
def apply_tfms(self, tfms:Collection, **kwargs):
self.obj = [item.apply_tfms(t, **kwargs) for item,t in zip(self.obj, tfms)]
self.data = [item.data for item in self.obj]
return self
class MixedItemList(ItemList):
def __init__(self, item_lists, path:PathOrStr=None, label_cls:Callable=None, inner_df:Any=None,
x:'ItemList'=None, ignore_empty:bool=False, processor=None):
self.item_lists = item_lists
if processor is None:
default_procs = [[p(ds=il) for p in listify(il._processor)] for il in item_lists]
processor = MixedProcessor([ifnone(il.processor, dp) for il,dp in zip(item_lists, default_procs)])
items = range_of(item_lists[0]) if len(item_lists) >= 1 else []
if path is None and len(item_lists) >= 1: path = item_lists[0].path
super().__init__(items, processor=processor, path=path,
label_cls=label_cls, inner_df=inner_df, x=x, ignore_empty=ignore_empty)
def new(self, item_lists, processor:PreProcessor=None, **kwargs)->'ItemList':
"Create a new `ItemList` from `items`, keeping the same attributes."
processor = ifnone(processor, self.processor)
copy_d = {o:getattr(self,o) for o in self.copy_new}
kwargs = {**copy_d, **kwargs}
return self.__class__(item_lists, processor=processor, **kwargs)
def get(self, i):
return MixedItem([il.get(i) for il in self.item_lists])
def __getitem__(self,idxs:int)->Any:
idxs = try_int(idxs)
if isinstance(idxs, Integral): return self.get(idxs)
else:
item_lists = [il.new(il.items[idxs], inner_df=index_row(il.inner_df, idxs)) for il in self.item_lists]
return self.new(item_lists, inner_df=index_row(self.inner_df, idxs))