forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_affinity_propagation.py
521 lines (420 loc) · 17 KB
/
_affinity_propagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"""Affinity Propagation clustering algorithm."""
# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
# Gael Varoquaux gael.varoquaux@normalesup.org
# License: BSD 3 clause
import numpy as np
import warnings
from ..exceptions import ConvergenceWarning
from ..base import BaseEstimator, ClusterMixin
from ..utils import as_float_array, check_random_state
from ..utils.deprecation import deprecated
from ..utils.validation import check_is_fitted
from ..metrics import euclidean_distances
from ..metrics import pairwise_distances_argmin
from .._config import config_context
def _equal_similarities_and_preferences(S, preference):
def all_equal_preferences():
return np.all(preference == preference.flat[0])
def all_equal_similarities():
# Create mask to ignore diagonal of S
mask = np.ones(S.shape, dtype=bool)
np.fill_diagonal(mask, 0)
return np.all(S[mask].flat == S[mask].flat[0])
return all_equal_preferences() and all_equal_similarities()
def affinity_propagation(
S,
*,
preference=None,
convergence_iter=15,
max_iter=200,
damping=0.5,
copy=True,
verbose=False,
return_n_iter=False,
random_state=None,
):
"""Perform Affinity Propagation Clustering of data.
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
S : array-like of shape (n_samples, n_samples)
Matrix of similarities between points.
preference : array-like of shape (n_samples,) or float, default=None
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number of
exemplars, i.e. of clusters, is influenced by the input preferences
value. If the preferences are not passed as arguments, they will be
set to the median of the input similarities (resulting in a moderate
number of clusters). For a smaller amount of clusters, this can be set
to the minimum value of the similarities.
convergence_iter : int, default=15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
max_iter : int, default=200
Maximum number of iterations
damping : float, default=0.5
Damping factor between 0.5 and 1.
copy : bool, default=True
If copy is False, the affinity matrix is modified inplace by the
algorithm, for memory efficiency.
verbose : bool, default=False
The verbosity level.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Returns
-------
cluster_centers_indices : ndarray of shape (n_clusters,)
Index of clusters centers.
labels : ndarray of shape (n_samples,)
Cluster labels for each point.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is
set to True.
Notes
-----
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
When the algorithm does not converge, it returns an empty array as
``cluster_center_indices`` and ``-1`` as label for each training sample.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, a single cluster center
and label ``0`` for every sample will be returned. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
"""
S = as_float_array(S, copy=copy)
n_samples = S.shape[0]
if S.shape[0] != S.shape[1]:
raise ValueError("S must be a square array (shape=%s)" % repr(S.shape))
if preference is None:
preference = np.median(S)
if damping < 0.5 or damping >= 1:
raise ValueError("damping must be >= 0.5 and < 1")
preference = np.array(preference)
if n_samples == 1 or _equal_similarities_and_preferences(S, preference):
# It makes no sense to run the algorithm in this case, so return 1 or
# n_samples clusters, depending on preferences
warnings.warn(
"All samples have mutually equal similarities. "
"Returning arbitrary cluster center(s)."
)
if preference.flat[0] >= S.flat[n_samples - 1]:
return (
(np.arange(n_samples), np.arange(n_samples), 0)
if return_n_iter
else (np.arange(n_samples), np.arange(n_samples))
)
else:
return (
(np.array([0]), np.array([0] * n_samples), 0)
if return_n_iter
else (np.array([0]), np.array([0] * n_samples))
)
random_state = check_random_state(random_state)
# Place preference on the diagonal of S
S.flat[:: (n_samples + 1)] = preference
A = np.zeros((n_samples, n_samples))
R = np.zeros((n_samples, n_samples)) # Initialize messages
# Intermediate results
tmp = np.zeros((n_samples, n_samples))
# Remove degeneracies
S += (
np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100
) * random_state.randn(n_samples, n_samples)
# Execute parallel affinity propagation updates
e = np.zeros((n_samples, convergence_iter))
ind = np.arange(n_samples)
for it in range(max_iter):
# tmp = A + S; compute responsibilities
np.add(A, S, tmp)
I = np.argmax(tmp, axis=1)
Y = tmp[ind, I] # np.max(A + S, axis=1)
tmp[ind, I] = -np.inf
Y2 = np.max(tmp, axis=1)
# tmp = Rnew
np.subtract(S, Y[:, None], tmp)
tmp[ind, I] = S[ind, I] - Y2
# Damping
tmp *= 1 - damping
R *= damping
R += tmp
# tmp = Rp; compute availabilities
np.maximum(R, 0, tmp)
tmp.flat[:: n_samples + 1] = R.flat[:: n_samples + 1]
# tmp = -Anew
tmp -= np.sum(tmp, axis=0)
dA = np.diag(tmp).copy()
tmp.clip(0, np.inf, tmp)
tmp.flat[:: n_samples + 1] = dA
# Damping
tmp *= 1 - damping
A *= damping
A -= tmp
# Check for convergence
E = (np.diag(A) + np.diag(R)) > 0
e[:, it % convergence_iter] = E
K = np.sum(E, axis=0)
if it >= convergence_iter:
se = np.sum(e, axis=1)
unconverged = np.sum((se == convergence_iter) + (se == 0)) != n_samples
if (not unconverged and (K > 0)) or (it == max_iter):
never_converged = False
if verbose:
print("Converged after %d iterations." % it)
break
else:
never_converged = True
if verbose:
print("Did not converge")
I = np.flatnonzero(E)
K = I.size # Identify exemplars
if K > 0 and not never_converged:
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K) # Identify clusters
# Refine the final set of exemplars and clusters and return results
for k in range(K):
ii = np.where(c == k)[0]
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
I[k] = ii[j]
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K)
labels = I[c]
# Reduce labels to a sorted, gapless, list
cluster_centers_indices = np.unique(labels)
labels = np.searchsorted(cluster_centers_indices, labels)
else:
warnings.warn(
"Affinity propagation did not converge, this model "
"will not have any cluster centers.",
ConvergenceWarning,
)
labels = np.array([-1] * n_samples)
cluster_centers_indices = []
if return_n_iter:
return cluster_centers_indices, labels, it + 1
else:
return cluster_centers_indices, labels
###############################################################################
class AffinityPropagation(ClusterMixin, BaseEstimator):
"""Perform Affinity Propagation Clustering of data.
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
damping : float, default=0.5
Damping factor (between 0.5 and 1) is the extent to
which the current value is maintained relative to
incoming values (weighted 1 - damping). This in order
to avoid numerical oscillations when updating these
values (messages).
max_iter : int, default=200
Maximum number of iterations.
convergence_iter : int, default=15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
copy : bool, default=True
Make a copy of input data.
preference : array-like of shape (n_samples,) or float, default=None
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number
of exemplars, ie of clusters, is influenced by the input
preferences value. If the preferences are not passed as arguments,
they will be set to the median of the input similarities.
affinity : {'euclidean', 'precomputed'}, default='euclidean'
Which affinity to use. At the moment 'precomputed' and
``euclidean`` are supported. 'euclidean' uses the
negative squared euclidean distance between points.
verbose : bool, default=False
Whether to be verbose.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Attributes
----------
cluster_centers_indices_ : ndarray of shape (n_clusters,)
Indices of cluster centers.
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Cluster centers (if affinity != ``precomputed``).
labels_ : ndarray of shape (n_samples,)
Labels of each point.
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
Stores the affinity matrix used in ``fit``.
n_iter_ : int
Number of iterations taken to converge.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
Notes
-----
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
The algorithmic complexity of affinity propagation is quadratic
in the number of points.
When ``fit`` does not converge, ``cluster_centers_`` becomes an empty
array and all training samples will be labelled as ``-1``. In addition,
``predict`` will then label every sample as ``-1``.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, ``fit`` will result in
a single cluster center and label ``0`` for every sample. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
Examples
--------
>>> from sklearn.cluster import AffinityPropagation
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AffinityPropagation(random_state=5).fit(X)
>>> clustering
AffinityPropagation(random_state=5)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])
>>> clustering.predict([[0, 0], [4, 4]])
array([0, 1])
>>> clustering.cluster_centers_
array([[1, 2],
[4, 2]])
"""
def __init__(
self,
*,
damping=0.5,
max_iter=200,
convergence_iter=15,
copy=True,
preference=None,
affinity="euclidean",
verbose=False,
random_state=None,
):
self.damping = damping
self.max_iter = max_iter
self.convergence_iter = convergence_iter
self.copy = copy
self.verbose = verbose
self.preference = preference
self.affinity = affinity
self.random_state = random_state
# TODO: Remove in 1.1
# mypy error: Decorated property not supported
@deprecated( # type: ignore
"Attribute `_pairwise` was deprecated in "
"version 0.24 and will be removed in 1.1 (renaming of 0.26)."
)
@property
def _pairwise(self):
return self.affinity == "precomputed"
def _more_tags(self):
return {"pairwise": self.affinity == "precomputed"}
def fit(self, X, y=None):
"""Fit the clustering from features, or affinity matrix.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
array-like of shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self
"""
if self.affinity == "precomputed":
accept_sparse = False
else:
accept_sparse = "csr"
X = self._validate_data(X, accept_sparse=accept_sparse)
if self.affinity == "precomputed":
self.affinity_matrix_ = X
elif self.affinity == "euclidean":
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
else:
raise ValueError(
"Affinity must be 'precomputed' or 'euclidean'. Got %s instead"
% str(self.affinity)
)
(
self.cluster_centers_indices_,
self.labels_,
self.n_iter_,
) = affinity_propagation(
self.affinity_matrix_,
preference=self.preference,
max_iter=self.max_iter,
convergence_iter=self.convergence_iter,
damping=self.damping,
copy=self.copy,
verbose=self.verbose,
return_n_iter=True,
random_state=self.random_state,
)
if self.affinity != "precomputed":
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
return self
def predict(self, X):
"""Predict the closest cluster each sample in X belongs to.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to predict. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
check_is_fitted(self)
X = self._validate_data(X, reset=False, accept_sparse="csr")
if not hasattr(self, "cluster_centers_"):
raise ValueError(
"Predict method is not supported when affinity='precomputed'."
)
if self.cluster_centers_.shape[0] > 0:
with config_context(assume_finite=True):
return pairwise_distances_argmin(X, self.cluster_centers_)
else:
warnings.warn(
"This model does not have any cluster centers "
"because affinity propagation did not converge. "
"Labeling every sample as '-1'.",
ConvergenceWarning,
)
return np.array([-1] * X.shape[0])
def fit_predict(self, X, y=None):
"""Fit the clustering from features or affinity matrix, and return
cluster labels.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
array-like of shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
return super().fit_predict(X, y)