forked from nmslib/hnswlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_old.py
57 lines (42 loc) · 1.75 KB
/
example_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import hnswlib
import numpy as np
dim = 16
num_elements = 10000
# Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
# Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip
# Initing index
# max_elements - the maximum number of elements, should be known beforehand
# (probably will be made optional in the future)
#
# ef_construction - controls index search speed/build speed tradeoff
# M - is tightly connected with internal dimensionality of the data
# stronlgy affects the memory consumption
p.init_index(max_elements=num_elements, ef_construction=100, M=16)
# Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10)
p.set_num_threads(4) # by default using all available cores
# We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:]
print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n")
# Serializing and deleting the index:
index_path='first_half.bin'
print("Saving index to '%s'" % index_path)
p.save_index("first_half.bin")
del p
# Reiniting, loading the index
p = hnswlib.Index(space='l2', dim=dim) # you can change the sa
print("\nLoading index from 'first_half.bin'\n")
p.load_index("first_half.bin")
print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")