-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdope_network.py
313 lines (227 loc) · 10.2 KB
/
dope_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 27 14:13:05 2019
@author: matusmacbookpro
"""
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision
#adapted from: https://github.com/NVlabs/Deep_Object_Pose/blob/master/scripts/train.py
def create_stage(in_channels, out_channels, first=False):
'''Create the neural network layers for a single stage.'''
model = nn.Sequential()
mid_channels = 128
if first:
padding = 1
kernel = 3
count = 6
final_channels = 512
else:
padding = 3
kernel = 7
count = 10
final_channels = mid_channels
# First convolution
model.add_module("0",
nn.Conv2d(
in_channels,
mid_channels,
kernel_size=kernel,
stride=1,
padding=padding)
)
# Middle convolutions
i = 1
while i < count - 1:
model.add_module(str(i), nn.ReLU(inplace=True))
i += 1
model.add_module(str(i),
nn.Conv2d(
mid_channels,
mid_channels,
kernel_size=kernel,
stride=1,
padding=padding))
i += 1
# Penultimate convolution
model.add_module(str(i), nn.ReLU(inplace=True))
i += 1
model.add_module(str(i), nn.Conv2d(mid_channels, final_channels, kernel_size=1, stride=1))
i += 1
# Last convolution
model.add_module(str(i), nn.ReLU(inplace=True))
i += 1
model.add_module(str(i), nn.Conv2d(final_channels, out_channels, kernel_size=1, stride=1))
i += 1
return model
class Net(nn.Module):
def __init__(self,pretrained=True,numBeliefMap=9,numAffinity=16,stop_at_stage=6): # number of stages to process (if less than total number of stages):
torch.manual_seed(123)
super(Net, self).__init__()
self.stop_at_stage = stop_at_stage
vgg_full = torchvision.models.vgg19(weights=torchvision.models.VGG19_Weights.IMAGENET1K_V1).features
self.vgg = nn.Sequential()
for i_layer in range(24):
self.vgg.add_module(str(i_layer), vgg_full[i_layer])
# Add some layers
i_layer = 23
self.vgg.add_module(str(i_layer), nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1))
self.vgg.add_module(str(i_layer+1), nn.ReLU(inplace=True))
self.vgg.add_module(str(i_layer+2), nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1))
self.vgg.add_module(str(i_layer+3), nn.ReLU(inplace=True))
# _2 are the belief map stages
self.m1_2 = create_stage(128, numBeliefMap, True)
self.m2_2 = create_stage(128 + numBeliefMap + numAffinity,
numBeliefMap, False)
self.m3_2 = create_stage(128 + numBeliefMap + numAffinity,
numBeliefMap, False)
self.m4_2 = create_stage(128 + numBeliefMap + numAffinity,
numBeliefMap, False)
self.m5_2 = create_stage(128 + numBeliefMap + numAffinity,
numBeliefMap, False)
self.m6_2 = create_stage(128 + numBeliefMap + numAffinity,
numBeliefMap, False)
# _1 are the affinity map stages
self.m1_1 = create_stage(128, numAffinity, True)
self.m2_1 = create_stage(128 + numBeliefMap + numAffinity,
numAffinity, False)
self.m3_1 = create_stage(128 + numBeliefMap + numAffinity,
numAffinity, False)
self.m4_1 = create_stage(128 + numBeliefMap + numAffinity,
numAffinity, False)
self.m5_1 = create_stage(128 + numBeliefMap + numAffinity,
numAffinity, False)
self.m6_1 = create_stage(128 + numBeliefMap + numAffinity,
numAffinity, False)
def forward(self, x):
'''Runs inference on the neural network'''
out1 = self.vgg(x)
out1_2 = self.m1_2(out1)
out1_1 = self.m1_1(out1)
if self.stop_at_stage == 1:
return [out1_2],\
[out1_1]
out2 = torch.cat([out1_2, out1_1, out1], 1)
out2_2 = self.m2_2(out2)
out2_1 = self.m2_1(out2)
if self.stop_at_stage == 2:
return [out1_2, out2_2],\
[out1_1, out2_1]
out3 = torch.cat([out2_2, out2_1, out1], 1)
out3_2 = self.m3_2(out3)
out3_1 = self.m3_1(out3)
if self.stop_at_stage == 3:
return [out1_2, out2_2, out3_2],\
[out1_1, out2_1, out3_1]
out4 = torch.cat([out3_2, out3_1, out1], 1)
out4_2 = self.m4_2(out4)
out4_1 = self.m4_1(out4)
if self.stop_at_stage == 4:
return [out1_2, out2_2, out3_2, out4_2],\
[out1_1, out2_1, out3_1, out4_1]
out5 = torch.cat([out4_2, out4_1, out1], 1)
out5_2 = self.m5_2(out5)
out5_1 = self.m5_1(out5)
if self.stop_at_stage == 5:
return [out1_2, out2_2, out3_2, out4_2, out5_2],\
[out1_1, out2_1, out3_1, out4_1, out5_1]
out6 = torch.cat([out5_2, out5_1, out1], 1)
out6_2 = self.m6_2(out6)
out6_1 = self.m6_1(out6)
return [out1_2, out2_2, out3_2, out4_2, out5_2, out6_2],\
[out1_1, out2_1, out3_1, out4_1, out5_1, out6_1]
class dope_net():
def __init__(self,learning_rate,gpu_device):
self.cud = torch.cuda.is_available()
self.gpu_device = gpu_device
self.learning_rate = learning_rate
self.net = Net()
if self.cud:
self.net.cuda(device=self.gpu_device)
print(f"Using GPU device: {self.gpu_device}.")
else:
print("Using CPU.")
self.optimizer = optim.Adam(self.net.parameters(), lr=self.learning_rate)
def compute_loss(self,output_belief,output_affinities,target_belief,target_affinity):
loss = None
for l in output_belief: #output, each belief map layers.
if loss is None:
loss = ((l - target_belief) * (l-target_belief)).mean()
else:
loss_tmp = ((l - target_belief) * (l-target_belief)).mean()
loss += loss_tmp
# Affinities loss
for l in output_affinities: #output, each belief map layers.
loss_tmp = ((l - target_affinity) * (l-target_affinity)).mean()
loss += loss_tmp
return loss
def adjust_learning_rate(self,optimizer,lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(self,train_images,train_affinities,train_beliefs):
# INPUT:
# train_images: batch of images (float32), size: (batch_size,3,x,y)
# train_affinities: batch of affinity maps (float32), size: (batch_size,16,x/8,y/8)
# train_beliefs: batch of belief maps (float32), size: (batch_size,9,x/8,y/8)
# OUTPUTS:
# loss: scalar
if self.cud:
train_images_v = Variable(train_images.cuda(device=self.gpu_device))
train_affinities_v = Variable(train_affinities.cuda(device=self.gpu_device))
train_beliefs_v = Variable(train_beliefs.cuda(device=self.gpu_device))
else:
train_images_v = Variable(train_images)
train_affinities_v = Variable(train_affinities)
train_beliefs_v = Variable(train_beliefs)
self.optimizer.zero_grad()
output_belief,output_affinity = self.net.forward(train_images_v)
J = self.compute_loss(output_belief,output_affinity,train_beliefs_v,train_affinities_v)
J.backward()
self.optimizer.step()
if self.cud:
loss = J.data.cpu().numpy()
else:
loss = J.data.numpy()
return loss
def test(self,test_images,test_affinities,test_beliefs):
# INPUT:
# test_images: batch of images (float32), size: (test_batch_size,3,x,y)
# test_affinities: batch of affinity maps (float32), size: (test_batch_size,16,x/8,y/8)
# test_beliefs: batch of belief maps (float32), size: (test_batch_size,9,x/8,y/8)
# OUTPUTS:
# loss: scalar
# belief: output belief maps, size: size: (test_batch_size,9,x/8,y/8)
# affinity: output affinity maps, size: (test_batch_size,16,x/8,y/8)
if self.cud:
test_images_v = Variable(test_images.cuda(device=self.gpu_device))
test_beliefs_v = Variable(test_beliefs.cuda(device=self.gpu_device))
test_affinities_v = Variable(test_affinities.cuda(device=self.gpu_device))
else:
test_images_v = Variable(test_images)
test_beliefs_v = Variable(test_beliefs)
test_affinities_v = Variable(test_affinities)
with torch.no_grad():
output_belief,output_affinity = self.net.forward(test_images_v)
J = self.compute_loss(output_belief,output_affinity,test_beliefs_v,test_affinities_v)
if self.cud:
belief = output_belief[5].data.cpu().numpy()
affinity = output_affinity[5].data.cpu().numpy()
loss = J.data.cpu().numpy()
else:
belief = output_belief[5].data.numpy()
affinity = output_affinity[5].data.numpy()
loss = J.data.numpy()
return belief,affinity,loss
def save_model(self,filename):
torch.save(self.net.state_dict(),filename)
def empty_cuda_cache(self):
torch.cuda.empty_cache()
def load_model(self,filename):
if self.cud:
self.net.load_state_dict(torch.load(filename,map_location = 'cuda:0'))
else:
self.net.load_state_dict(torch.load(filename,map_location='cpu'))