Skip to content

Latest commit

 

History

History

config

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

config

Contains hyper-parameter configurations for models.

Hyper-parameter search-space is specificed in /config/config.py. Default values tuned during paper experiments are defined in /config/<dataset>/<outcome>/<domain>/config_<model>_<strategy>.json.

main.py arguments

Individual experiments can be specified with a combination of --domain_shift and --outcome parameters. A subset of models and Continual learning strategies can be evaluated with --models and --strategies respectively. To re-run hyperparameter tuning pass the --validate flag.

Example:

python main.py --domain_shift hospital --outcome mortality_48h --models CNN --strategies EWC Replay
Flag Arg(s) Meaning
--domain_shift region hospital age ethnicity Domain shift exhibited between tasks
--outcome mortality_48h Shock_4h Shock_12h ARF_4h ARF_12h Outcome to predict
--models MLP CNN RNN LSTM GRU Transformer Model(s) to evaluate
--strategies Naive Cumulative EWC OnlineEWC LwF SI GEM AGEM Replay GDumb Continual learning strategy(s) to evaluate
--validate Re-tune hyper-parameters
--num_samples <int> Budget for hyper-parameter search