forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_alphafold.py
844 lines (726 loc) · 36.8 KB
/
run_alphafold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full AlphaFold protein structure prediction script."""
import enum
import json
import os
import pathlib
import pickle
import random
import shutil
import sys
import time
from typing import Any, Dict, Union
from absl import app
from absl import flags
from absl import logging
from alphafold.common import confidence
from alphafold.common import protein
from alphafold.common import residue_constants
from alphafold.data import pipeline
from alphafold.data import pipeline_multimer
from alphafold.data import templates
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
from alphafold.model import config
from alphafold.model import data
from alphafold.model import model
from alphafold.model import edit_config
from alphafold.relax import relax
import jax.numpy as jnp
import numpy as np
import jax
import ray
import functools, itertools
from pprint import pformat
import datetime
import colabfold as cf
import colabfold_alphafold as cf_af
# Internal import (7716).
logging.set_verbosity(logging.INFO)
@enum.unique
class ModelsToRelax(enum.Enum):
ALL = 0
BEST = 1
NONE = 2
flags.DEFINE_list(
'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
'target that will be folded one after another. If a FASTA file contains '
'multiple sequences, then it will be folded as a multimer. Paths should be '
'separated by commas. All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for each prediction.')
flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
'store the results.')
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
'Path to the JackHMMER executable.')
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
'Path to the HHblits executable.')
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
'Path to the HHsearch executable.')
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
'database for use by HHblits.')
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
'version of BFD used with the "reduced_dbs" preset.')
flags.DEFINE_string('uniref30_database_path', None, 'Path to the UniRef30 '
'database for use by HHblits.')
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
'database for use by JackHMMer.')
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
'database for use by HHsearch.')
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
'seqres database for use by hmmsearch.')
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
'mapping from obsolete PDB IDs to the PDB IDs of their '
'replacements.')
flags.DEFINE_enum('db_preset', 'full_dbs',
['full_dbs', 'reduced_dbs'],
'Choose preset MSA database configuration - '
'smaller genetic database config (reduced_dbs) or '
'full genetic database config (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
'Choose preset model configuration - the monomer model, '
'the monomer model with extra ensembling, monomer model with '
'pTM head, or multimer model')
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
'to obtain a timing that excludes the compilation time, '
'which should be more indicative of the time required for '
'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
'pipeline. By default, this is randomly generated. Note '
'that even if this is set, Alphafold may still not be '
'deterministic, because processes like GPU inference are '
'nondeterministic.')
flags.DEFINE_integer('num_multimer_predictions_per_model', 5, 'How many '
'predictions (each with a different random seed) will be '
'generated per model. E.g. if this is 2 and there are 5 '
'models then there will be 10 predictions per input. '
'Note: this FLAG only applies if model_preset=multimer')
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
'have been written to disk instead of running the MSA '
'tools. The MSA files are looked up in the output '
'directory, so it must stay the same between multiple '
'runs that are to reuse the MSAs. WARNING: This will not '
'check if the sequence, database or configuration have '
'changed.')
flags.DEFINE_enum_class('models_to_relax', ModelsToRelax.BEST, ModelsToRelax,
'The models to run the final relaxation step on. '
'If `all`, all models are relaxed, which may be time '
'consuming. If `best`, only the most confident model '
'is relaxed. If `none`, relaxation is not run. Turning '
'off relaxation might result in predictions with '
'distracting stereochemical violations but might help '
'in case you are having issues with the relaxation '
'stage.')
flags.DEFINE_boolean('use_gpu_relax', None, 'Whether to relax on GPU. '
'Relax on GPU can be much faster than CPU, so it is '
'recommended to enable if possible. GPUs must be available'
' if this setting is enabled.')
flags.DEFINE_boolean('perform_MD_only', None, 'Whether to use MD only..')
flags.DEFINE_boolean('use_amber', None, 'Whether to use Amber as MD engine or CHARMM')
#Colabfold
# https://github.com/sokrypton/ColabFold/blob/main/colabfold/alphafold/models.py#L10
flags.DEFINE_integer('num_recycles', None, 'Different model_preset has different num_recycles...')
flags.DEFINE_float('recycle_early_stop_tolerance', None, 'Only multimer has this option set...')
flags.DEFINE_integer('num_ensemble', 1, '1 is a default while CASP is 8...')
flags.DEFINE_integer('max_seq', None, 'Number of cluster centers?')
flags.DEFINE_integer('max_extra_seq', None, 'Number of cluster centers?')
# flags.DEFINE_boolean('use_fuse', False, 'Global config for mono and multimer... ')
flags.DEFINE_boolean('use_bfloat16', True, 'Only for multimer')
flags.DEFINE_boolean('use_dropout', False, 'Global config for mono and multimer...')
#AlphaFlow for position conditioning
flags.DEFINE_string('alphaflow_cond_pdb', None, 'Whether to condition on PDB file')
FLAGS = flags.FLAGS
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 3
def _check_flag(flag_name: str,
other_flag_name: str,
should_be_set: bool):
if should_be_set != bool(FLAGS[flag_name].value):
verb = 'be' if should_be_set else 'not be'
raise ValueError(f'{flag_name} must {verb} set when running with '
f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
def _jnp_to_np(output: Dict[str, Any]) -> Dict[str, Any]:
"""Recursively changes jax arrays to numpy arrays."""
for k, v in output.items():
if isinstance(v, dict):
output[k] = _jnp_to_np(v)
elif isinstance(v, jnp.ndarray):
output[k] = np.array(v)
return output
def _np_to_jnp(output: Dict[str, Any]) -> Dict[str, Any]:
"""Recursively changes numpy arrays to jax arrays."""
for k, v in output.items():
if isinstance(v, dict):
output[k] = _np_to_jnp(v)
elif isinstance(v, np.ndarray):
output[k] = jnp.array(v)
return output
def _save_confidence_json_file(
plddt: np.ndarray, output_dir: str, model_name: str
) -> None:
confidence_json = confidence.confidence_json(plddt)
# Save the confidence json.
confidence_json_output_path = os.path.join(
output_dir, f'confidence_{model_name}.json'
)
with open(confidence_json_output_path, 'w') as f:
f.write(confidence_json)
def _load_confidence_json_file(
output_dir: str, model_name: str
) -> None:
# Save the confidence json.
confidence_json_output_path = os.path.join(
output_dir, f'confidence_{model_name}.json'
)
with open(confidence_json_output_path, 'r') as f:
confidence_json = json.load(f)
return confidence_json
def _save_pae_json_file(
pae: np.ndarray, max_pae: float, output_dir: str, model_name: str
) -> None:
"""Check prediction result for PAE data and save to a JSON file if present.
Args:
pae: The n_res x n_res PAE array.
max_pae: The maximum possible PAE value.
output_dir: Directory to which files are saved.
model_name: Name of a model.
"""
pae_json = confidence.pae_json(pae, max_pae)
# Save the PAE json.
pae_json_output_path = os.path.join(output_dir, f'pae_{model_name}.json')
with open(pae_json_output_path, 'w') as f:
f.write(pae_json)
def _load_pae_json_file(
output_dir: str, model_name: str
) -> None:
"""Check prediction result for PAE data and save to a JSON file if present.
Args:
output_dir: Directory to which files are saved.
model_name: Name of a model.
"""
# Save the PAE json.
pae_json_output_path = os.path.join(output_dir, f'pae_{model_name}.json')
with open(pae_json_output_path, 'r') as f:
pae_json = json.load(f)
return pae_json
def collate_dictionary(dic0, dic1):
dic0.update(dic1)
return dic0
def fetch_files_for_rank(output_dir_base, fasta_name, model_runners):
output_dir = os.path.join(output_dir_base, fasta_name)
unrelaxed_pdbs = {}
#NEED this for: timings, unrelaxed_proteins, unrelaxed_pdbs, ranking_confidences
timings_output_path = os.path.join(output_dir, 'timings.json')
with open(timings_output_path, 'r') as f:
timings = json.load(f)
# for model_name, _ in itertools.islice(model_runners.items(), 1): #do it only once!
for model_name, _ in model_runners.items(): #do it only once!
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'rb') as f:
np_prediction_result = pickle.load(f)
prediction_result = _np_to_jnp(dict(np_prediction_result))
unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
with open(unrelaxed_pdb_path, 'r') as f:
unrelaxed_pdbs[model_name] = f.read()
ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
with open(ranking_output_path, 'r') as f:
label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
ranking_outputs = json.load(f)
ranking_confidences = ranking_outputs[label]
return timings, unrelaxed_pdbs, ranking_confidences, label
def predict_structure(
fasta_path: str,
fasta_name: str,
output_dir_base: str,
data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
model_runners: Dict[str, model.RunModel],
amber_relaxer: relax.AmberRelaxation,
benchmark: bool,
random_seed: int,
models_to_relax: ModelsToRelax):
"""Predicts structure using AlphaFold for the given sequence."""
logging.info('Predicting %s', fasta_name)
timings = {}
output_dir = os.path.join(output_dir_base, fasta_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
msa_output_dir = os.path.join(output_dir, 'msas')
if not os.path.exists(msa_output_dir):
os.makedirs(msa_output_dir)
# Get features. https://github.com/Zuricho/ParallelFold/blob/main/run_alphafold.py
t_0 = time.time()
features_output_path = os.path.join(output_dir, 'features.pkl')
# If we already have feature.pkl file, skip the MSA and template finding step
if os.path.exists(features_output_path):
feature_dict = pickle.load(open(features_output_path, 'rb'))
else:
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
# Write out features as a pickled dictionary.
features_output_path = os.path.join(output_dir, 'features.pkl')
with open(features_output_path, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)
end_time = time.time()
timings['features'] = end_time - t_0
timings['features_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
timings['features_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
unrelaxed_pdbs = {}
unrelaxed_proteins = {}
relaxed_pdbs = {}
relax_metrics = {}
ranking_confidences = {}
# Run the models.
num_models = len(model_runners)
num_gpus = jax.local_device_count()
@ray.remote(num_gpus=1)
def predict_one_structure(
model_index :int,
model_name: str,
model_runner: model.RunModel):
logging.info('Running model %s on %s', model_name, fasta_name)
t_0 = time.time()
model_random_seed = model_index + random_seed * num_models
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=model_random_seed)
end_time = time.time()
timings[f'process_features_{model_name}'] = end_time - t_0
timings[f'process_features_{model_name}_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
timings[f'process_features_{model_name}_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
t_0 = time.time()
prediction_result = model_runner.predict(processed_feature_dict,
random_seed=model_random_seed)
end_time = time.time()
t_diff = end_time - t_0
timings[f'predict_and_compile_{model_name}'] = t_diff
timings[f'predict_and_compile_{model_name}_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
timings[f'predict_and_compile_{model_name}_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
logging.info(
'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
model_name, fasta_name, t_diff)
if benchmark:
t_0 = time.time()
model_runner.predict(processed_feature_dict,
random_seed=model_random_seed)
end_time = time.time()
t_diff = end_time - t_0
timings[f'predict_benchmark_{model_name}'] = t_diff
timings[f'predict_benchmark_{model_name}_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
timings[f'predict_benchmark_{model_name}_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
logging.info(
'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
model_name, fasta_name, t_diff)
plddt = prediction_result['plddt']
_save_confidence_json_file(plddt, output_dir, model_name)
ranking_confidences[model_name] = prediction_result['ranking_confidence']
if (
'predicted_aligned_error' in prediction_result
and 'max_predicted_aligned_error' in prediction_result
):
pae = prediction_result['predicted_aligned_error']
max_pae = prediction_result['max_predicted_aligned_error']
_save_pae_json_file(pae, float(max_pae), output_dir, model_name)
# Remove jax dependency from results.
np_prediction_result = _jnp_to_np(dict(prediction_result))
#Get a label early on!
label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
# Save the model outputs.
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'wb') as f:
pickle.dump(np_prediction_result, f, protocol=4)
# Add the predicted LDDT in the b-factor column.
# Note that higher predicted LDDT value means higher model confidence.
plddt_b_factors = np.repeat(
plddt[:, None], residue_constants.atom_type_num, axis=-1)
unrelaxed_protein = protein.from_prediction(
features=processed_feature_dict,
result=prediction_result,
b_factors=plddt_b_factors,
remove_leading_feature_dimension=not model_runner.multimer_mode)
unrelaxed_proteins[model_name] = unrelaxed_protein
unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
with open(unrelaxed_pdb_path, 'w') as f:
f.write(unrelaxed_pdbs[model_name])
num_res = len(feature_dict["residue_index"])
out = cf_af.parse_results(prediction_result, processed_feature_dict, FLAGS.num_recycles, 0, num_res) #-> dict
out = {key + f"_{model_name}": val for key, val in out.items()}
return timings, unrelaxed_proteins, unrelaxed_pdbs, ranking_confidences, out, label
outputs = [predict_one_structure.remote(model_index, model_name, model_runner) for model_index, (model_name, model_runner) in enumerate(model_runners.items())]
outputs = ray.get(outputs) #->List[tuple(dict)]
#ray.shutdown()
outputs_ = list(zip(*outputs)) #->[(dic0, dic0...), (dic1, dic1...), ...]
outputs = outputs_[:5] #-> Get the tuple of dicts
label = outputs_[-1][0] #-> Get the tuple of labels then a label
assert len(outputs) == 5, "There should be only FIVE tuples ready..." #Colabfold modification: Nov-17-2023
timings, unrelaxed_proteins, unrelaxed_pdbs, ranking_confidences, extra_results = [functools.reduce(collate_dictionary, out) for out in outputs] #->List[dict]
#timings has to be saved to resume MD
timings_output_path = os.path.join(output_dir, 'timings.json')
with open(timings_output_path, 'w') as f:
f.write(json.dumps(timings, indent=4))
#ranking_confidences has to be saved to resume MD
ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
with open(ranking_output_path, 'w') as f:
f.write(json.dumps(
{label: ranking_confidences}, indent=4))
#extra_results for contact map etc
extra_output_path = os.path.join(output_dir, 'extra_results.json')
with open(extra_output_path, 'w') as f:
f.write(json.dumps(extra_results, indent=4))
return timings, unrelaxed_proteins, unrelaxed_pdbs, ranking_confidences, label #No need to return extra_results
def structure_ranker( model_runners: Dict[str, model.RunModel],
random_seed: int,
output_dir_base: str,
fasta_name: str,
amber_relaxer: relax.AmberRelaxation,
models_to_relax: ModelsToRelax,
timings: dict,
unrelaxed_proteins :dict,
unrelaxed_pdbs: dict,
ranking_confidences: dict,
label: str,
perform_MD_only: bool,
use_amber: bool):
output_dir = os.path.join(output_dir_base, fasta_name)
features_output_path = os.path.join(output_dir, 'features.pkl')
feature_dict = pickle.load(open(features_output_path, 'rb'))
num_models = len(model_runners)
if perform_MD_only:
assert isinstance(unrelaxed_proteins, type(None)), "when performing an independent MD, make sure to set unrelaxed_proteins option None"
logging.info('Independently running (an) MD simulation(s) by setting perform_MD_only false option...')
# Save the model outputs.
unrelaxed_proteins = {}
for model_index, (model_name, model_runner) in enumerate(model_runners.items()):
model_random_seed = model_index + random_seed * num_models
# If we already have feature.pkl file, skip the MSA and template finding step
# if os.path.exists(features_output_path):
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=model_random_seed)
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'rb') as f:
np_prediction_result = pickle.load(f)
prediction_result = _np_to_jnp(dict(np_prediction_result))
# plddt = _load_confidence_json_file(output_dir, model_name)
plddt = prediction_result['plddt']
plddt_b_factors = np.repeat(
plddt[:, None], residue_constants.atom_type_num, axis=-1)
unrelaxed_protein = protein.from_prediction(
features=processed_feature_dict,
result=prediction_result,
b_factors=plddt_b_factors,
remove_leading_feature_dimension=not model_runner.multimer_mode)
unrelaxed_proteins[model_name] = unrelaxed_protein
relaxed_pdbs = {}
relax_metrics = {}
# Rank by model confidence.
ranked_order = [
model_name for model_name, confidence in
sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)]
# Relax predictions.
if models_to_relax == ModelsToRelax.BEST:
to_relax = [ranked_order[0]]
elif models_to_relax == ModelsToRelax.ALL:
to_relax = ranked_order
elif models_to_relax == ModelsToRelax.NONE:
to_relax = []
@ray.remote(num_gpus=1)
def run_one_openmm(model_name):
t_0 = time.time()
relaxed_pdb_str, _, violations = amber_relaxer.process(
prot=unrelaxed_proteins[model_name])
relax_metrics[model_name] = {
'remaining_violations': violations,
'remaining_violations_count': sum(violations)
}
end_time = time.time()
t_diff = end_time - t_0
timings[f'relax_{model_name}'] = t_diff
timings[f'relax_{model_name}_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
timings[f'relax_{model_name}_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
return relaxed_pdb_str, relax_metrics, timings
outputs = [run_one_openmm.remote(model_name) for model_name in to_relax]
outputs = ray.get(outputs) #->List[tuple(...)]
#ray.shutdown()
outputs = list(zip(*outputs)) #-> List[(str,str,str...), (dic,dic,dic...), (dic,dic,dic...)]
relaxed_pdb_strs = outputs[0]
relax_metrics, timings = [functools.reduce(collate_dictionary, out) for out in outputs[1:]]
for model_name, relaxed_pdb_str in zip(to_relax, relaxed_pdb_strs):
relaxed_pdbs[model_name] = relaxed_pdb_str
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
output_dir, f'relaxed_{model_name}.pdb')
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
# Write out relaxed PDBs in rank order.
for idx, model_name in enumerate(ranked_order):
suffix = "amber" if use_amber else "charmm"
ranked_output_path = os.path.join(output_dir, f'ranked_{idx}_{suffix}.pdb')
with open(ranked_output_path, 'w') as f:
if model_name in relaxed_pdbs:
f.write(relaxed_pdbs[model_name])
else:
f.write(unrelaxed_pdbs[model_name])
# result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
# with open(result_output_path, 'rb') as f:
# np_prediction_result = pickle.load(f)
# prediction_result = _np_to_jnp(dict(np_prediction_result))
ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
with open(ranking_output_path, 'w') as f:
# label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts' #takes a label as an input to the function!
f.write(json.dumps(
{label: ranking_confidences, 'order': ranked_order}, indent=4))
logging.info('Final timings for %s: %s', fasta_name, timings)
timings_output_path = os.path.join(output_dir, 'timings.json')
with open(timings_output_path, 'w') as f:
f.write(json.dumps(timings, indent=4))
if models_to_relax != ModelsToRelax.NONE:
relax_metrics_path = os.path.join(output_dir, 'relax_metrics.json')
with open(relax_metrics_path, 'w') as f:
f.write(json.dumps(relax_metrics, indent=4))
def main(argv):
logging.info("\n\n Alphafold Prediction Started")
total_time = {}
t_setup_start = time.time()
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
for tool_name in (
'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
if not FLAGS[f'{tool_name}_binary_path'].value:
raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
'sure it is installed on your system.')
use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
_check_flag('small_bfd_database_path', 'db_preset',
should_be_set=use_small_bfd)
_check_flag('bfd_database_path', 'db_preset',
should_be_set=not use_small_bfd)
_check_flag('uniref30_database_path', 'db_preset',
should_be_set=not use_small_bfd)
run_multimer_system = 'multimer' in FLAGS.model_preset
_check_flag('pdb70_database_path', 'model_preset',
should_be_set=not run_multimer_system)
_check_flag('pdb_seqres_database_path', 'model_preset',
should_be_set=run_multimer_system)
_check_flag('uniprot_database_path', 'model_preset',
should_be_set=run_multimer_system)
if FLAGS.model_preset == 'monomer_casp14':
num_ensemble = 8
else:
num_ensemble = 1
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
if run_multimer_system:
template_searcher = hmmsearch.Hmmsearch(
binary_path=FLAGS.hmmsearch_binary_path,
hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
database_path=FLAGS.pdb_seqres_database_path)
template_featurizer = templates.HmmsearchHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
else:
template_searcher = hhsearch.HHSearch(
binary_path=FLAGS.hhsearch_binary_path,
databases=[FLAGS.pdb70_database_path])
template_featurizer = templates.HhsearchHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
monomer_data_pipeline = pipeline.DataPipeline(
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
hhblits_binary_path=FLAGS.hhblits_binary_path,
uniref90_database_path=FLAGS.uniref90_database_path,
mgnify_database_path=FLAGS.mgnify_database_path,
bfd_database_path=FLAGS.bfd_database_path,
uniref30_database_path=FLAGS.uniref30_database_path,
small_bfd_database_path=FLAGS.small_bfd_database_path,
template_searcher=template_searcher,
template_featurizer=template_featurizer,
use_small_bfd=use_small_bfd,
use_precomputed_msas=FLAGS.use_precomputed_msas)
if run_multimer_system:
num_predictions_per_model = FLAGS.num_multimer_predictions_per_model
data_pipeline = pipeline_multimer.DataPipeline(
monomer_data_pipeline=monomer_data_pipeline,
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
uniprot_database_path=FLAGS.uniprot_database_path,
use_precomputed_msas=FLAGS.use_precomputed_msas)
else:
# num_predictions_per_model = 1
num_predictions_per_model = FLAGS.num_multimer_predictions_per_model
data_pipeline = monomer_data_pipeline
model_runners = {}
model_names = config.MODEL_PRESETS[FLAGS.model_preset]
for model_name in model_names:
model_config = config.model_config(model_name)
# if run_multimer_system:
# model_config.model.num_ensemble_eval = num_ensemble
# else:
# model_config.data.eval.num_ensemble = num_ensemble
model_config = edit_config.load_models_config(
model_name=model_name,
config=model_config,
num_recycles = FLAGS.num_recycles,
recycle_early_stop_tolerance = FLAGS.recycle_early_stop_tolerance,
num_ensemble = FLAGS.num_ensemble,
model_order = None,
max_seq = FLAGS.max_seq,
max_extra_seq = FLAGS.max_extra_seq,
# use_fuse = FLAGS.use_fuse,
use_bfloat16 = FLAGS.use_bfloat16,
use_dropout = FLAGS.use_dropout,
save_all = True,
model_suffix = FLAGS.model_preset,
alphaflow_cond_pdb= FLAGS.alphaflow_cond_pdb)
model_params = data.get_model_haiku_params(
model_name=model_name, data_dir=FLAGS.data_dir)
model_runner = model.RunModel(model_config, model_params)
for i in range(num_predictions_per_model):
model_runners[f'{model_name}_pred_{i}'] = model_runner
logging.info('Have %d models: %s', len(model_runners),
list(model_runners.keys()))
amber_relaxer = relax.AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
use_gpu=FLAGS.use_gpu_relax,
use_amber=FLAGS.use_amber)
random_seed = FLAGS.random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize // len(model_runners))
logging.info('Using random seed %d for the data pipeline', random_seed)
t_setup_end = time.time()
total_time['setting_up_time'] = t_setup_end - t_setup_start
total_time['setting_up_start_time'] = datetime.datetime.fromtimestamp(t_setup_start).strftime("%H:%M:%S")
total_time['setting_up_end_time'] = datetime.datetime.fromtimestamp(t_setup_end).strftime("%H:%M:%S")
# Predict structure for each of the sequences.
t_pred_start = time.time()
for i, fasta_path in enumerate(FLAGS.fasta_paths):
additional_timings = {}
t_0 = time.time()
fasta_name = fasta_names[i]
if not FLAGS.perform_MD_only:
timings, unrelaxed_proteins, unrelaxed_pdbs, ranking_confidences, label = predict_structure(
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=FLAGS.output_dir,
data_pipeline=data_pipeline,
model_runners=model_runners,
amber_relaxer=amber_relaxer,
benchmark=FLAGS.benchmark,
random_seed=random_seed,
models_to_relax=FLAGS.models_to_relax)
structure_ranker( model_runners=model_runners,
random_seed=random_seed,
output_dir_base=FLAGS.output_dir,
fasta_name=fasta_name,
amber_relaxer=amber_relaxer,
models_to_relax=FLAGS.models_to_relax,
timings=timings,
unrelaxed_proteins=unrelaxed_proteins,
unrelaxed_pdbs=unrelaxed_pdbs,
ranking_confidences=ranking_confidences,
label=label,
perform_MD_only=FLAGS.perform_MD_only,
use_amber=FLAGS.use_amber)
else:
timings, unrelaxed_pdbs, ranking_confidences, label = fetch_files_for_rank(FLAGS.output_dir, fasta_name, model_runners)
structure_ranker( model_runners=model_runners,
random_seed=random_seed,
output_dir_base=FLAGS.output_dir,
fasta_name=fasta_name,
amber_relaxer=amber_relaxer,
models_to_relax=FLAGS.models_to_relax,
timings=timings,
unrelaxed_proteins=None, #since it will be auto-filled
unrelaxed_pdbs=unrelaxed_pdbs,
ranking_confidences=ranking_confidences,
label=label,
perform_MD_only=FLAGS.perform_MD_only,
use_amber=FLAGS.use_amber)
end_time = time.time()
additional_timings[f'{fasta_name}_prediction_time'] = end_time - t_0
additional_timings[f'{fasta_name}_prediction_start_time'] = datetime.datetime.fromtimestamp(t_0).strftime("%H:%M:%S")
additional_timings[f'{fasta_name}_prediction_end_time'] = datetime.datetime.fromtimestamp(end_time).strftime("%H:%M:%S")
additional_timings.update(total_time)
logging.info('\n\n Additional timings for %s: %s', fasta_name, additional_timings)
output_dir = os.path.join(FLAGS.output_dir, fasta_name)
additional_timings_output_path = os.path.join(output_dir, 'additional_timings.json')
with open(additional_timings_output_path, 'w') as f:
f.write(json.dumps(additional_timings, indent=4))
t_pred_end = time.time()
total_time['prediction_time'] = t_pred_end - t_pred_start
total_time['prediction_start_time'] = datetime.datetime.fromtimestamp(t_pred_start).strftime("%H:%M:%S")
total_time['prediction_end_time'] = datetime.datetime.fromtimestamp(t_pred_end).strftime("%H:%M:%S")
total_time['Total Prediction Time'] = t_pred_end - t_setup_start
total_time['Total_start_time'] = datetime.datetime.fromtimestamp(t_setup_start).strftime("%H:%M:%S")
total_time['Total_end_time'] = datetime.datetime.fromtimestamp(t_pred_end).strftime("%H:%M:%S")
# Save this dict as json file
logging.info('\n\n Total timing info: %s', total_time)
total_time_output_path = os.path.join(FLAGS.output_dir, 'total_time.json')
with open(total_time_output_path, 'w') as f:
f.write(json.dumps(total_time, indent=4))
logging.info("\n\n Alphafold Prediction Ended")
if __name__ == '__main__':
flags.mark_flags_as_required([
'fasta_paths',
'output_dir',
'data_dir',
'uniref90_database_path',
'mgnify_database_path',
'template_mmcif_dir',
'max_template_date',
'obsolete_pdbs_path',
'use_gpu_relax',
'perform_MD_only'
])
# Connect to Ray Cluster
ray.init(address=os.environ["ip_head"])
logging.info('''\n\n This cluster consists of
{} nodes in total
{} CPU resources in total
{} GPU resources in total
'''.format(len(ray.nodes()), ray.cluster_resources()['CPU'], ray.cluster_resources()['GPU']))
logging.info("\n\n Node information: \n {}".format(pformat(ray.nodes())))
logging.info("\n\n Resources information: \n {}".format(pformat(ray.cluster_resources())))
app.run(main)