forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcolabfold_alphafold.py
821 lines (699 loc) · 31.8 KB
/
colabfold_alphafold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
import os
from urllib import request
from concurrent import futures
import pickle
import jax
from alphafold.data.tools import jackhmmer
from alphafold.data import parsers
from alphafold.data import pipeline
from alphafold.common import protein
from alphafold.model import config
from alphafold.model import model
from alphafold.model import data
from alphafold.model.tf import shape_placeholders
import tensorflow as tf
from string import ascii_uppercase
import numpy as np
import matplotlib.pyplot as plt
import re
import colabfold as cf
import pairmsa
try:
from google.colab import files
IN_COLAB = True
except:
IN_COLAB = False
import tqdm.notebook
TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]'
#######################################################################################################################################
# prep_inputs
#######################################################################################################################################
def prep_inputs(sequence, jobname="test", homooligomer="1", output_dir=None, clean=False, verbose=True):
# process inputs
sequence = str(sequence)
sequence = re.sub("[^A-Z:/]", "", sequence.upper())
sequence = re.sub(":+",":",sequence)
sequence = re.sub("/+","/",sequence)
sequence = re.sub("^[:/]+","",sequence)
sequence = re.sub("[:/]+$","",sequence)
jobname = re.sub(r'\W+', '', jobname)
homooligomer = str(homooligomer)
homooligomer = re.sub("[:/]+",":",homooligomer)
homooligomer = re.sub("^[:/]+","",homooligomer)
homooligomer = re.sub("[:/]+$","",homooligomer)
if len(homooligomer) == 0: homooligomer = "1"
homooligomer = re.sub("[^0-9:]", "", homooligomer)
# define inputs
I = {"ori_sequence":sequence,
"sequence":sequence.replace("/","").replace(":",""),
"seqs":sequence.replace("/","").split(":"),
"homooligomer":homooligomer,
"homooligomers":[int(h) for h in homooligomer.split(":")],
"msas":[], "deletion_matrices":[]}
# adjust homooligomer option
if len(I["seqs"]) != len(I["homooligomers"]):
if len(I["homooligomers"]) == 1:
I["homooligomers"] = [I["homooligomers"][0]] * len(I["seqs"])
else:
if verbose:
print("WARNING: Mismatch between number of breaks ':' in 'sequence' and 'homooligomer' definition")
while len(I["seqs"]) > len(I["homooligomers"]):
I["homooligomers"].append(1)
I["homooligomers"] = I["homooligomers"][:len(I["seqs"])]
I["homooligomer"] = ":".join([str(h) for h in I["homooligomers"]])
# define full sequence being modelled
I["full_sequence"] = ''.join([s*h for s,h in zip(I["seqs"],I["homooligomers"])])
I["lengths"] = [len(seq) for seq in I["seqs"]]
# prediction directory
if output_dir is None:
I["output_dir"] = 'prediction_' + jobname + '_' + cf.get_hash(I["full_sequence"])[:5]
else:
I["output_dir"] = output_dir
os.makedirs(I["output_dir"], exist_ok=True)
# delete existing files in working directory
if clean:
for f in os.listdir(I["output_dir"]):
os.remove(os.path.join(I["output_dir"], f))
if verbose and len(I["full_sequence"]) > 1400:
print(f"WARNING: For a typical Google-Colab-GPU (16G) session, the max total length is ~1400 residues. You are at {len(I['full_sequence'])}!")
print(f"Run Alphafold may crash, unless you trim to the protein(s) to a short length. (See trim options below).")
if verbose:
print(f"homooligomer: {I['homooligomer']}")
print(f"total_length: {len(I['full_sequence'])}")
print(f"output_dir: {I['output_dir']}")
return I
#######################################################################################################################################
# prep_msa
#######################################################################################################################################
def run_jackhmmer(sequence, prefix, jackhmmer_binary_path='jackhmmer', verbose=True):
fasta_path = f"{prefix}.fasta"
with open(fasta_path, 'wt') as f:
f.write(f'>query\n{sequence}')
pickled_msa_path = f"{prefix}.jackhmmer.pickle"
if os.path.isfile(pickled_msa_path):
msas_dict = pickle.load(open(pickled_msa_path,"rb"))
msas, deletion_matrices, names = (msas_dict[k] for k in ['msas', 'deletion_matrices', 'names'])
full_msa = []
for msa in msas:
full_msa += msa
else:
# --- Find the closest source ---
test_url_pattern = 'https://storage.googleapis.com/alphafold-colab{:s}/latest/uniref90_2021_03.fasta.1'
ex = futures.ThreadPoolExecutor(3)
def fetch(source):
request.urlretrieve(test_url_pattern.format(source))
return source
fs = [ex.submit(fetch, source) for source in ['', '-europe', '-asia']]
source = None
for f in futures.as_completed(fs):
source = f.result()
ex.shutdown()
break
dbs = []
num_jackhmmer_chunks = {'uniref90': 59, 'smallbfd': 17, 'mgnify': 71}
total_jackhmmer_chunks = sum(num_jackhmmer_chunks.values())
disable_tqdm = not verbose
with tqdm.notebook.tqdm(total=total_jackhmmer_chunks, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar:
def jackhmmer_chunk_callback(i):
pbar.update(n=1)
pbar.set_description('Searching uniref90')
jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/uniref90_2021_03.fasta',
get_tblout=True,
num_streamed_chunks=num_jackhmmer_chunks['uniref90'],
streaming_callback=jackhmmer_chunk_callback,
z_value=135301051)
dbs.append(('uniref90', jackhmmer_uniref90_runner.query(fasta_path)))
pbar.set_description('Searching smallbfd')
jackhmmer_smallbfd_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/bfd-first_non_consensus_sequences.fasta',
get_tblout=True,
num_streamed_chunks=num_jackhmmer_chunks['smallbfd'],
streaming_callback=jackhmmer_chunk_callback,
z_value=65984053)
dbs.append(('smallbfd', jackhmmer_smallbfd_runner.query(fasta_path)))
pbar.set_description('Searching mgnify')
jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/mgy_clusters_2019_05.fasta',
get_tblout=True,
num_streamed_chunks=num_jackhmmer_chunks['mgnify'],
streaming_callback=jackhmmer_chunk_callback,
z_value=304820129)
dbs.append(('mgnify', jackhmmer_mgnify_runner.query(fasta_path)))
# --- Extract the MSAs and visualize ---
# Extract the MSAs from the Stockholm files.
# NB: deduplication happens later in pipeline.make_msa_features.
mgnify_max_hits = 501
msas = []
deletion_matrices = []
names = []
for db_name, db_results in dbs:
unsorted_results = []
for i, result in enumerate(db_results):
msa, deletion_matrix, target_names = parsers.parse_stockholm(result['sto'])
e_values_dict = parsers.parse_e_values_from_tblout(result['tbl'])
e_values = [e_values_dict[t.split('/')[0]] for t in target_names]
zipped_results = zip(msa, deletion_matrix, target_names, e_values)
if i != 0:
# Only take query from the first chunk
zipped_results = [x for x in zipped_results if x[2] != 'query']
unsorted_results.extend(zipped_results)
sorted_by_evalue = sorted(unsorted_results, key=lambda x: x[3])
db_msas, db_deletion_matrices, db_names, _ = zip(*sorted_by_evalue)
if db_msas:
if db_name == 'mgnify':
db_msas = db_msas[:mgnify_max_hits]
db_deletion_matrices = db_deletion_matrices[:mgnify_max_hits]
db_names = db_names[:mgnify_max_hits]
msas.append(db_msas)
deletion_matrices.append(db_deletion_matrices)
names.append(db_names)
msa_size = len(set(db_msas))
print(f'{msa_size} Sequences Found in {db_name}')
pickle.dump({"msas":msas,
"deletion_matrices":deletion_matrices,
"names":names}, open(pickled_msa_path,"wb"))
return msas, deletion_matrices, names
def prep_msa(I, msa_method="mmseqs2", add_custom_msa=False, msa_format="fas",
pair_mode="unpaired", pair_cov=50, pair_qid=20,
hhfilter_loc="hhfilter", reformat_loc="reformat.pl", TMP_DIR="tmp",
custom_msa=None, precomputed=None,
mmseqs_host_url="https://a3m.mmseqs.com",
verbose=True):
# make temp directory
os.makedirs(TMP_DIR, exist_ok=True)
# clear previous inputs
I["msas"] = []
I["deletion_matrices"] = []
if add_custom_msa:
if IN_COLAB:
print(f"upload custom msa in '{msa_format}' format")
msa_dict = files.upload()
lines = msa_dict[list(msa_dict.keys())[0]].decode()
input_file = os.path.join(I["output_dir"],f"upload.{msa_format}")
with open(input_file,"w") as tmp_upload:
tmp_upload.write(lines)
else:
input_file = custom_msa
if input_file is None or not os.path.isfile(input_file):
raise ValueError("ERROR: `custom_msa` undefined")
else:
# convert to a3m
output_file = os.path.join(I["output_dir"],f"upload.a3m")
os.system(f"{reformat_loc} {msa_format} a3m {input_file} {output_file}")
# parse
msa, mtx = parsers.parse_a3m(open(output_file,"r").read())
I["msas"].append(msa)
I["deletion_matrices"].append(mtx)
if len(I["msas"][0][0]) != len(I["sequence"]):
raise ValueError("ERROR: the length of msa does not match input sequence")
if msa_method == "precomputed":
if IN_COLAB:
print("upload precomputed pickled msa from previous run")
uploaded_dict = files.upload()
uploaded_filename = list(uploaded_dict.keys())[0]
I.update(pickle.loads(uploaded_dict[uploaded_filename]))
elif precomputed is None:
raise ValueError("ERROR: `precomputed` undefined")
else:
I.update(pickle.load(open(precomputed,"rb")))
elif msa_method == "single_sequence":
if len(I["msas"]) == 0:
I["msas"].append([I["sequence"]])
I["deletion_matrices"].append([[0]*len(I["sequence"])])
else:
_blank_seq = ["-" * L for L in I["lengths"]]
_blank_mtx = [[0] * L for L in I["lengths"]]
def _pad(ns,vals,mode):
if mode == "seq": _blank = _blank_seq.copy()
if mode == "mtx": _blank = _blank_mtx.copy()
if isinstance(ns, list):
for n,val in zip(ns,vals): _blank[n] = val
else: _blank[ns] = vals
if mode == "seq": return "".join(_blank)
if mode == "mtx": return sum(_blank,[])
if len(I["seqs"]) == 1 or "unpaired" in pair_mode:
# gather msas
if msa_method == "mmseqs2":
prefix = cf.get_hash(I["sequence"])
prefix = os.path.join(TMP_DIR,prefix)
print(f"running mmseqs2")
A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_filter=True, host_url=mmseqs_host_url)
for n, seq in enumerate(I["seqs"]):
# tmp directory
prefix = cf.get_hash(seq)
prefix = os.path.join(TMP_DIR,prefix)
if msa_method == "mmseqs2":
# run mmseqs2
a3m_lines = A3M_LINES[n]
msa, mtx = parsers.parse_a3m(a3m_lines)
msas_, mtxs_ = [msa],[mtx]
elif msa_method == "jackhmmer":
print(f"running jackhmmer on seq_{n}")
# run jackhmmer
msas_, mtxs_, names_ = ([sum(x,())] for x in run_jackhmmer(seq, prefix))
# pad sequences
for msa_,mtx_ in zip(msas_,mtxs_):
msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])]
for s,m in zip(msa_,mtx_):
msa.append(_pad(n,s,"seq"))
mtx.append(_pad(n,m,"mtx"))
I["msas"].append(msa)
I["deletion_matrices"].append(mtx)
# PAIR_MSA
if len(I["seqs"]) > 1 and (pair_mode == "paired" or pair_mode == "unpaired+paired"):
print("attempting to pair some sequences...")
if msa_method == "mmseqs2":
prefix = cf.get_hash(I["sequence"])
prefix = os.path.join(TMP_DIR,prefix)
print(f"running mmseqs2_noenv_nofilter on all seqs")
A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_env=False, use_filter=False, host_url=mmseqs_host_url)
_data = []
for a in range(len(I["seqs"])):
print(f"prepping seq_{a}")
_seq = I["seqs"][a]
_prefix = os.path.join(TMP_DIR,cf.get_hash(_seq))
if msa_method == "mmseqs2":
a3m_lines = A3M_LINES[a]
_msa, _mtx, _lab = pairmsa.parse_a3m(a3m_lines,
filter_qid=pair_qid/100,
filter_cov=pair_cov/100)
elif msa_method == "jackhmmer":
_msas, _mtxs, _names = run_jackhmmer(_seq, _prefix)
_msa, _mtx, _lab = pairmsa.get_uni_jackhmmer(_msas[0], _mtxs[0], _names[0],
filter_qid=pair_qid/100,
filter_cov=pair_cov/100)
if len(_msa) > 1:
_data.append(pairmsa.hash_it(_msa, _lab, _mtx, call_uniprot=False))
else:
_data.append(None)
Ln = len(I["seqs"])
O = [[None for _ in I["seqs"]] for _ in I["seqs"]]
for a in range(Ln):
if _data[a] is not None:
for b in range(a+1,Ln):
if _data[b] is not None:
print(f"attempting pairwise stitch for {a} {b}")
O[a][b] = pairmsa._stitch(_data[a],_data[b])
_seq_a, _seq_b, _mtx_a, _mtx_b = (*O[a][b]["seq"],*O[a][b]["mtx"])
# filter to remove redundant sequences
ok = []
with open(f"{TMP_DIR}/tmp.fas","w") as fas_file:
fas_file.writelines([f">{n}\n{a+b}\n" for n,(a,b) in enumerate(zip(_seq_a,_seq_b))])
os.system(f"{hhfilter_loc} -maxseq 1000000 -i {TMP_DIR}/tmp.fas -o {TMP_DIR}/tmp.id90.fas -id 90")
for line in open(f"{TMP_DIR}/tmp.id90.fas","r"):
if line.startswith(">"): ok.append(int(line[1:]))
if verbose:
print(f"found {len(_seq_a)} pairs ({len(ok)} after filtering)")
if len(_seq_a) > 0:
msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])]
for s_a,s_b,m_a,m_b in zip(_seq_a, _seq_b, _mtx_a, _mtx_b):
msa.append(_pad([a,b],[s_a,s_b],"seq"))
mtx.append(_pad([a,b],[m_a,m_b],"mtx"))
I["msas"].append(msa)
I["deletion_matrices"].append(mtx)
# save MSA as pickle
pickle.dump({"msas":I["msas"],"deletion_matrices":I["deletion_matrices"]},
open(os.path.join(I["output_dir"],"msa.pickle"),"wb"))
return I
#######################################################################################################################################
# prep_filter
#######################################################################################################################################
def trim_inputs(trim, msas, deletion_matrices, ori_seq=None, inverse=False):
'''
input: trim, msas, deletion_matrices, ori_seq
output: msas, deletion_matrices, ori_seq
'''
if ori_seq is None: ori_seq = msas[0][0]
seqs = ori_seq.replace("/","").split(":")
L_ini = 0
chain_idx = {}
idx_chain = []
for chain,seq in zip(ascii_uppercase,seqs):
L = len(seq)
chain_idx[chain] = dict(zip(range(L),range(L_ini,L_ini+L)))
idx_chain += [f"{chain}{i+1}" for i in range(L)]
L_ini += L
global_idx = dict(zip(range(L_ini),range(L_ini)))
mode = "keeping" if inverse else "trimming"
trim_set = []
for idx in trim.split(","):
i,j = idx.split("-") if "-" in idx else (idx,"")
# set index reference frame
trim_idx_i = trim_idx_j = global_idx
if i != "" and i[0] in ascii_uppercase:
trim_idx_i,i = chain_idx[i[0]], i[1:]
if j != "" and j[0] in ascii_uppercase:
trim_idx_j,j = chain_idx[j[0]], j[1:]
# set which positions to trim
if "-" in idx:
i = trim_idx_i[int(i)-1] if i != "" else trim_idx_i[0]
j = trim_idx_j[int(j)-1] if j != "" else trim_idx_j[len(trim_idx_j) - 1]
trim_set += list(range(i,j+1))
print(f"{mode} positions: {idx_chain[i]}-{idx_chain[j]}")
else:
i = trim_idx_i[int(i)-1]
trim_set.append(i)
print(f"{mode} position: {idx_chain[i]}")
# deduplicate list
trim_set = set(trim_set)
if inverse:
trim_set = set(range(L_ini)) ^ trim_set
trim_set = sorted(list(trim_set))
# trim MSA
mod_msas, mod_mtxs = [],[]
for msa, mtx in zip(msas, deletion_matrices):
mod_msa = np.delete([list(s) for s in msa], trim_set, 1)
ok = (mod_msa != "-").sum(-1) > 0
mod_msas.append(["".join(s) for s in mod_msa[ok]])
mod_mtx = np.asarray(mtx)[ok]
mod_mtxs.append(np.delete(mod_mtx, trim_set, 1).tolist())
# trim original sequence
mod_idx = []
mod_chain = []
mod_ori_seq = []
for n,a in enumerate(ori_seq.replace("/","").replace(":","")):
if n not in trim_set:
mod_ori_seq.append(a)
mod_idx.append(n)
mod_chain.append(idx_chain[n][0])
if len(mod_idx) > 1:
if mod_chain[-1] != mod_chain[-2]:
mod_ori_seq[-1] = ":"
mod_ori_seq.append(a)
elif (mod_idx[-1] - mod_idx[-2]) > 1:
mod_ori_seq[-1] = "/"
mod_ori_seq.append(a)
mod_ori_seq = "".join(mod_ori_seq)
chains = sorted([ascii_uppercase.index(a) for a in set(mod_chain)])
return {"msas":mod_msas, "deletion_matrices":mod_mtxs,
"ori_sequence":mod_ori_seq, "chains":chains}
def cov_qid_filter(msas, deletion_matrices, ori_seq=None, cov=0, qid=0):
if ori_seq is None: ori_seq = msas[0][0]
seqs = ori_seq.replace("/","").split(":")
ref_seq_ = np.array(list("".join(seqs)))
new_msas,new_mtxs = [],[]
L = np.asarray([len(seq) for seq in seqs])
Ln = np.cumsum(np.append(0,L))
for msa, mtx in zip(msas, deletion_matrices):
msa_ = np.asarray([list(seq) for seq in msa])
# coverage (non-gap characters)
cov_ = msa_ != "-"
# sequence identity to query
qid_ = msa_ == ref_seq_
# split by protein (for protein complexes)
cov__ = np.stack([cov_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1)
qid__ = np.stack([qid_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1)
not_empty__ = cov__ > 0
ok = []
for n in range(len(msa)):
m = not_empty__[n]
if m.sum() > 0:
q = qid__[n][m].sum() / cov__[n][m].sum()
c = cov__[n][m].sum() / L[m].sum()
if q > qid and c > cov:
ok.append(n)
new_msas.append([msa[n] for n in ok])
new_mtxs.append([mtx[n] for n in ok])
return {"msas":new_msas, "deletion_matrices":new_mtxs}
def prep_filter(I, trim="", trim_inverse=False, cov=0, qid=0, verbose=True):
trim = re.sub("[^0-9A-Z,-]", "", trim.upper())
trim = re.sub(",+",",",trim)
trim = re.sub("^[,]+","",trim)
trim = re.sub("[,]+$","",trim)
if trim != "" or cov > 0 or qid > 0:
mod_I = dict(I)
if trim != "":
mod_I.update(trim_inputs(trim, mod_I["msas"], mod_I["deletion_matrices"],
mod_I["ori_sequence"], inverse=trim_inverse))
mod_I["homooligomers"] = [mod_I["homooligomers"][c] for c in mod_I["chains"]]
mod_I["sequence"] = mod_I["ori_sequence"].replace("/","").replace(":","")
mod_I["seqs"] = mod_I["ori_sequence"].replace("/","").split(":")
mod_I["full_sequence"] = "".join([s*h for s,h in zip(mod_I["seqs"], mod_I["homooligomers"])])
new_length = len(mod_I["full_sequence"])
if verbose:
print(f"total_length: '{new_length}' after trimming")
if cov > 0 or qid > 0:
mod_I.update(cov_qid_filter(mod_I["msas"], mod_I["deletion_matrices"],
mod_I["ori_sequence"], cov=cov/100, qid=qid/100))
return mod_I
else:
return I
#######################################################################################################################################
# prep features
#######################################################################################################################################
def prep_feats(I, clean=False):
def _placeholder_template_feats(num_templates_, num_res_):
return {
'template_aatype': np.zeros([num_templates_, num_res_, 22], np.float32),
'template_all_atom_masks': np.zeros([num_templates_, num_res_, 37], np.float32),
'template_all_atom_positions': np.zeros([num_templates_, num_res_, 37, 3], np.float32),
'template_domain_names': np.zeros([num_templates_], np.float32),
'template_sum_probs': np.zeros([num_templates_], np.float32),
}
# delete old files
if clean:
for f in os.listdir(I["output_dir"]):
if "rank_" in f: os.remove(os.path.join(I["output_dir"], f))
if len(I["msas"]) == 0:
print("WARNING: no MSA found, switching to 'single_sequence' mode")
I["msas"].append([I["sequence"]])
I["deletion_matrices"].append([[0]*len(I["sequence"])])
# homooligomerize
lengths = [len(seq) for seq in I["seqs"]]
msas_mod, deletion_matrices_mod = cf.homooligomerize_heterooligomer(I["msas"], I["deletion_matrices"],
lengths, I["homooligomers"])
# define input features
num_res = len(I["full_sequence"])
feature_dict = {}
feature_dict.update(pipeline.make_sequence_features(I["full_sequence"], 'test', num_res))
feature_dict.update(pipeline.make_msa_features(msas_mod, deletion_matrices=deletion_matrices_mod))
feature_dict.update(_placeholder_template_feats(0, num_res))
# set chainbreaks
Ls = []
for seq,h in zip(I["ori_sequence"].split(":"), I["homooligomers"]):
Ls += [len(s) for s in seq.split("/")] * h
Ls_plot = []
for seq,h in zip(I["seqs"], I["homooligomers"]):
Ls_plot += [len(seq)] * h
feature_dict['residue_index'] = cf.chain_break(feature_dict['residue_index'], Ls)
feature_dict['Ls'] = Ls_plot
feature_dict['output_dir'] = I["output_dir"]
return feature_dict
def make_fixed_size(feat, runner):
'''pad input features'''
opt = runner["opt"]
cfg = runner["model"].config
shape_schema = {k:[None]+v for k,v in dict(cfg.data.eval.feat).items()}
pad_size_map = {
shape_placeholders.NUM_RES: opt["L"],
shape_placeholders.NUM_MSA_SEQ: cfg.data.eval.max_msa_clusters,
shape_placeholders.NUM_EXTRA_SEQ: cfg.data.common.max_extra_msa,
shape_placeholders.NUM_TEMPLATES: 0,
}
for k, v in feat.items():
# Don't transfer this to the accelerator.
if k == 'extra_cluster_assignment':
continue
shape = list(v.shape)
schema = shape_schema[k]
assert len(shape) == len(schema), (
f'Rank mismatch between shape and shape schema for {k}: '
f'{shape} vs {schema}')
pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)]
padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)]
if padding:
feat[k] = tf.pad(v, padding, name=f'pad_to_fixed_{k}')
feat[k].set_shape(pad_size)
return {k:np.asarray(v) for k,v in feat.items()}
#######################################################################################################################################
# run alphafold
#######################################################################################################################################
def clear_mem(device=None):
'''remove all data from device'''
backend = jax.lib.xla_bridge.get_backend(device)
if hasattr(backend,'live_buffers'):
for buf in backend.live_buffers():
buf.delete()
OPT_DEFAULT = {"N":None, "L":None,
"use_ptm":True, "use_turbo":True,
"max_recycles":3, "tol":0, "num_ensemble":1,
"max_msa_clusters":512, "max_extra_msa":1024,
"is_training":False}
def prep_model_runner(opt=None, model_name="model_5", old_runner=None, params_loc='./alphafold/data'):
# setup the [opt]ions
if opt is None:
opt = OPT_DEFAULT.copy()
else:
for k in OPT_DEFAULT:
if k not in opt: opt[k] = OPT_DEFAULT[k]
# if old_runner not defined or [opt]ions changed, start new runner
if old_runner is None or old_runner["opt"] != opt:
clear_mem()
name = f"{model_name}_ptm" if opt["use_ptm"] else model_name
cfg = config.model_config(name)
if opt["use_turbo"]:
if opt["N"] is None:
cfg.data.eval.max_msa_clusters = opt["max_msa_clusters"]
cfg.data.common.max_extra_msa = opt["max_extra_msa"]
else:
msa_clusters = min(opt["N"], opt["max_msa_clusters"])
cfg.data.eval.max_msa_clusters = msa_clusters
cfg.data.common.max_extra_msa = max(min(opt["N"] - msa_clusters, opt["max_extra_msa"]),1)
cfg.data.common.num_recycle = opt["max_recycles"]
cfg.model.num_recycle = opt["max_recycles"]
cfg.model.recycle_tol = opt["tol"]
cfg.data.eval.num_ensemble = opt["num_ensemble"]
params = data.get_model_haiku_params(name, params_loc)
return {"model":model.RunModel(cfg, params, is_training=opt["is_training"]), "opt":opt}
else:
return old_runner
def run_alphafold(feature_dict, opt=None, runner=None, num_models=5, num_samples=1, subsample_msa=True,
pad_feats=False, rank_by="pLDDT", show_images=True, params_loc='./alphafold/data', verbose=True):
def do_subsample_msa(F, random_seed=0):
'''subsample msa to avoid running out of memory'''
N = len(F["msa"])
L = len(F["residue_index"])
N_ = int(3E7/L)
if N > N_:
if verbose:
print(f"whhhaaa... too many sequences ({N}) subsampling to {N_}")
np.random.seed(random_seed)
idx = np.append(0,np.random.permutation(np.arange(1,N)))[:N_]
F_ = {}
F_["msa"] = F["msa"][idx]
F_["deletion_matrix_int"] = F["deletion_matrix_int"][idx]
F_["num_alignments"] = np.full_like(F["num_alignments"],N_)
for k in F.keys():
if k not in F_: F_[k] = F[k]
return F_
else:
return F
def parse_results(prediction_result, processed_feature_dict, r, t, num_res):
'''parse results and convert to numpy arrays'''
to_np = lambda a: np.asarray(a)
def class_to_np(c):
class dict2obj():
def __init__(self, d):
for k,v in d.items(): setattr(self, k, to_np(v))
return dict2obj(c.__dict__)
dist_bins = jax.numpy.append(0,prediction_result["distogram"]["bin_edges"])
dist_logits = prediction_result["distogram"]["logits"][:num_res,:][:,:num_res]
dist_mtx = dist_bins[dist_logits.argmax(-1)]
contact_mtx = jax.nn.softmax(dist_logits)[:,:,dist_bins < 8].sum(-1)
b_factors = prediction_result['plddt'][:,None] * prediction_result['structure_module']['final_atom_mask']
p = protein.from_prediction(processed_feature_dict, prediction_result, b_factors=b_factors)
plddt = prediction_result['plddt'][:num_res]
out = {"unrelaxed_protein": class_to_np(p),
"plddt": to_np(plddt),
"pLDDT": to_np(plddt.mean()),
"dists": to_np(dist_mtx),
"adj": to_np(contact_mtx),
"recycles":to_np(r),
"tol":to_np(t)}
if "ptm" in prediction_result:
out["pae"] = to_np(prediction_result['predicted_aligned_error'][:num_res,:][:,:num_res])
out["pTMscore"] = to_np(prediction_result['ptm'])
return out
num_res = len(feature_dict["residue_index"])
# if [opt]ions not defined
if opt is None:
opt = OPT_DEFAULT.copy()
opt["N"] = len(feature_dict["msa"])
opt["L"] = num_res
else:
for k in OPT_DEFAULT.keys():
if k not in opt: opt[k] = OPT_DEFAULT[k]
model_names = ['model_1', 'model_2', 'model_3', 'model_4', 'model_5'][:num_models]
total = len(model_names) * num_samples
outs = {}
def do_report(key):
o = outs[key]
if verbose:
line = f"{key} recycles:{o['recycles']} tol:{o['tol']:.2f} pLDDT:{o['pLDDT']:.2f}"
if 'pTMscore' in o:
line += f" pTMscore:{o['pTMscore']:.2f}"
print(line)
if show_images:
fig = cf.plot_protein(o['unrelaxed_protein'], Ls=feature_dict["Ls"], dpi=100)
plt.show()
tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb')
pdb_lines = protein.to_pdb(o['unrelaxed_protein'])
with open(tmp_pdb_path, 'w') as f: f.write(pdb_lines)
disable_tqdm = not verbose
with tqdm.notebook.tqdm(total=total, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar:
if opt["use_turbo"]:
if runner is None:
runner = prep_model_runner(opt,params_loc=params_loc)
# go through each random_seed
for seed in range(num_samples):
# prep input features
feat = do_subsample_msa(feature_dict, random_seed=seed) if subsample_msa else feature_dict
processed_feature_dict = runner["model"].process_features(feat, random_seed=seed)
if pad_feats:
processed_feature_dict = make_fixed_size(processed_feature_dict, runner)
# go through each model
for num, model_name in enumerate(model_names):
name = model_name+"_ptm" if opt["use_ptm"] else model_name
key = f"{name}_seed_{seed}"
pbar.set_description(f'Running {key}')
# replace model parameters
params = data.get_model_haiku_params(name, params_loc)
for k in runner["model"].params.keys():
runner["model"].params[k] = params[k]
# predict
prediction_result, (r, t) = runner["model"].predict(processed_feature_dict, random_seed=seed)
outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res)
# cleanup
del prediction_result, params, r, t
# report
do_report(key)
pbar.update(n=1)
# cleanup
del processed_feature_dict
if subsample_msa: del feat
else:
# go through each model
for num, model_name in enumerate(model_names):
name = model_name+"_ptm" if opt["use_ptm"] else model_name
model_runner = prep_model_runner(opt, model_name=model_name, params_loc=params_loc)["model"]
# go through each random_seed
for seed in range(num_samples):
key = f"{name}_seed_{seed}"
pbar.set_description(f'Running {key}')
processed_feature_dict = model_runner.process_features(feature_dict, random_seed=seed)
# predict
prediction_result, (r, t) = model_runner.predict(processed_feature_dict, random_seed=seed)
outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res)
# cleanup
del processed_feature_dict, prediction_result, r, t
# report
do_report(key)
pbar.update(n=1)
# cleanup
del model_runner
# Find the best model according to the mean pLDDT.
model_rank = list(outs.keys())
model_rank = [model_rank[i] for i in np.argsort([outs[x][rank_by] for x in model_rank])[::-1]]
# Write out the prediction
for n,key in enumerate(model_rank):
prefix = f"rank_{n+1}_{key}"
pred_output_path = os.path.join(feature_dict["output_dir"],f'{prefix}_unrelaxed.pdb')
fig = cf.plot_protein(outs[key]["unrelaxed_protein"], Ls=feature_dict["Ls"], dpi=200)
plt.savefig(os.path.join(feature_dict["output_dir"],f'{prefix}.png'), bbox_inches = 'tight')
plt.close(fig)
pdb_lines = protein.to_pdb(outs[key]["unrelaxed_protein"])
with open(pred_output_path, 'w') as f:
f.write(pdb_lines)
tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb')
if os.path.isfile(tmp_pdb_path):
os.remove(tmp_pdb_path)
############################################################
if verbose:
print(f"model rank based on {rank_by}")
for n,key in enumerate(model_rank):
print(f"rank_{n+1}_{key} {rank_by}:{outs[key][rank_by]:.2f}")
return outs, model_rank