-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
166 lines (149 loc) · 6.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
import torch
from functools import partial
from tqdm import tqdm as std_tqdm
tqdm = partial(std_tqdm, dynamic_ncols=True)
from data_loader.data_loader import fetch_dataloader
from model.model import fetch_model
from optimizer.optimizer import fetch_optimizer
from loss.loss import compute_loss, compute_metric
from common import tool
from common.manager import Manager
from common.config import Config
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default="", type=str, help="Directory containing params.json")
parser.add_argument("--resume", default=None, type=str, help="Path of model weights")
parser.add_argument("-ow", "--only_weights", action="store_true", help="Only load model weights or load all train status")
def train(model, mng: Manager):
# Reset loss status
mng.reset_loss_status()
# Set model to training mode
torch.cuda.empty_cache()
model.train()
# Use tqdm for progress bar
t = tqdm(total=len(mng.dataloader["train"]))
# Train loop
for batch_idx, batch_input in enumerate(mng.dataloader["train"]):
# Move input to GPU if available
batch_input = tool.tensor_gpu(batch_input)
# Compute model output and loss
batch_output = model(batch_input)
loss = compute_loss(mng.cfg, batch_input, batch_output)
# Update loss status and print current loss and average loss
mng.update_loss_status(loss=loss, batch_size=mng.cfg.train.batch_size)
# Clean previous gradients, compute gradients of all variables wrt loss
mng.optimizer.zero_grad()
# import pdb
# pdb.set_trace()
loss["total"].backward()
# add gradient clip
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
# Perform updates using calculated gradients
mng.optimizer.step()
# Update step: step += 1
mng.update_step()
# Write loss to tensorboard
mng.write_loss_to_tb(split="train")
# Write custom info to tensorboard
mng.write_custom_info_to_tb(batch_input, batch_output, split="train")
# Training info print
print_str = mng.tqdm_info(split="train")
# Tqdm settings
t.set_description(desc=print_str)
t.update()
# Close tqdm
t.close()
def evaluate(model, mng: Manager):
# Set model to evaluation mode
torch.cuda.empty_cache()
model.eval()
with torch.no_grad():
# Compute metrics over the dataset
for split in ["val", "test"]:
if split not in mng.dataloader:
continue
# Initialize loss and metric statuses
mng.reset_loss_status()
mng.reset_metric_status(split)
cur_sample_idx = 0
for batch_idx, batch_input in enumerate(mng.dataloader[split]):
# Move data to GPU if available
batch_input = tool.tensor_gpu(batch_input)
# Compute model output
batch_output = model(batch_input)
# Get real batch size
if "img" in batch_input:
batch_size = batch_input["img"].size()[0]
elif "img_0" in batch_input:
batch_size = batch_input["img_0"].size()[0]
else:
batch_size = mng.cfg.test.batch_size
# # Compute all loss on this batch
# loss = compute_loss(mng.cfg, batch_input, batch_output)
# mng.update_loss_status(loss, batch_size)
# Compute all metrics on this batch
if "DEX_YCB" in mng.cfg.data.name:
metric = compute_metric(mng.cfg, batch_input, batch_output)
batch_output = tool.tensor_gpu(batch_output, check_on=False)
batch_output = [{k: v[bid] for k, v in batch_output.items()} for bid in range(batch_size)]
# evaluate
custom_metric = mng.dataset[split].evaluate(batch_output, cur_sample_idx)
cur_sample_idx += len(batch_output)
metric.update(custom_metric)
else:
metric = compute_metric(mng.cfg, batch_input, batch_output)
mng.update_metric_status(metric, split, batch_size)
# Update data to tensorboard
mng.write_metric_to_tb(split)
# # Write custom info to tensorboard
# mng.write_custom_info_to_tb(batch_input, batch_output, split)
# For each epoch, update and print the metric
mng.print_metric(split, only_best=False)
def train_and_evaluate(model, mng: Manager):
mng.logger.info("Starting training for {} epoch(s)".format(mng.cfg.train.num_epochs))
# Load weights from restore_file if specified
if mng.cfg.base.resume is not None:
mng.load_ckpt()
for epoch in range(mng.epoch, mng.cfg.train.num_epochs):
# Train one epoch
train(model, mng)
# Evaluate one epoch
evaluate(model, mng)
# Check if current is best, save best and latest checkpoints
mng.save_ckpt()
# Update scheduler
mng.scheduler.step()
# Update epoch: epoch += 1
mng.update_epoch()
def main(cfg):
# Set the logger
logger = tool.set_logger(os.path.join(cfg.base.model_dir, "train.log"))
# Print GPU ids
gpu_ids = ", ".join(str(i) for i in [j for j in range(cfg.base.num_gpu)])
logger.info("Using GPU ids: [{}]".format(gpu_ids))
# Fetch dataloader
dl, ds = fetch_dataloader(cfg)
# Fetch model
model = fetch_model(cfg)
# Define optimizer and scheduler
optimizer, scheduler = fetch_optimizer(cfg, model)
# Initialize manager
mng = Manager(model=model, optimizer=optimizer, scheduler=scheduler, cfg=cfg, dataloader=dl, dataset=ds, logger=logger)
# Train the model
train_and_evaluate(model, mng)
if __name__ == "__main__":
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, "cfg.json")
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
cfg = Config(json_path).cfg
# Update args into cfg.base
cfg.base.update(vars(args))
# Use GPU if available
cfg.base.cuda = torch.cuda.is_available()
if cfg.base.cuda:
cfg.base.num_gpu = torch.cuda.device_count()
torch.backends.cudnn.benchmark = True
# Main function
main(cfg)