-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
jaehwan
committed
May 28, 2024
1 parent
78340d2
commit b16a1a7
Showing
8 changed files
with
255 additions
and
97 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,42 +1,68 @@ | ||
FROM pytorch/pytorch | ||
FROM ubuntu:20.04 | ||
|
||
RUN groupadd -r user && useradd -m --no-log-init -r -g user user | ||
# Set up environment variables | ||
ENV DEBIAN_FRONTEND=noninteractive | ||
ENV PATH="/home/user/.local/bin:${PATH}" | ||
ENV nnUNet_results="/opt/algorithm/checkpoint/" | ||
ENV nnUNet_raw="/opt/algorithm/nnUNet_raw_data_base" | ||
ENV nnUNet_preprocessed="/opt/algorithm/preproc" | ||
ENV MKL_SERVICE_FORCE_INTEL=1 | ||
ENV OMP_NUM_THREADS=1 | ||
ENV OPENBLAS_NUM_THREADS=1 | ||
ENV MKL_NUM_THREADS=1 | ||
ENV NUMEXPR_NUM_THREADS=1 | ||
|
||
RUN mkdir -p /opt/app /input /output \ | ||
&& chown user:user /opt/app /input /output | ||
# Install system dependencies | ||
RUN apt-get update && apt-get install -y \ | ||
python3.9 \ | ||
python3.9-venv \ | ||
python3.9-dev \ | ||
python3-pip \ | ||
zip \ | ||
unzip \ | ||
gdb \ | ||
&& rm -rf /var/lib/apt/lists/* | ||
|
||
# Set python3.9 as the default python3 | ||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 | ||
|
||
# Add user | ||
ARG UID=1000 | ||
ARG GID=1000 | ||
RUN groupadd -g ${GID} user && useradd -u ${UID} -g user -m --no-log-init -r -g user user | ||
|
||
# Create necessary directories and set permissions | ||
RUN mkdir -p /opt/app /input /output /opt/algorithm/checkpoint/nnUNet \ | ||
&& chown -R user:user /opt/app /input /output /opt/algorithm/checkpoint/nnUNet | ||
|
||
# Switch to user | ||
USER user | ||
WORKDIR /opt/app | ||
|
||
ENV PATH="/home/user/.local/bin:${PATH}" | ||
# Install Python packages | ||
RUN python3 -m pip install --user -U pip | ||
RUN python3 -m pip install --user pip-tools | ||
RUN python3 -m pip install --upgrade pip | ||
|
||
RUN python -m pip install --user -U pip && python -m pip install --user pip-tools && python -m pip install --upgrade pip | ||
COPY --chown=user:user nnUNet/ /opt/app/nnUNet/ | ||
RUN python -m pip install -e nnUNet | ||
#RUN python -m pip uninstall -y scipy | ||
#RUN python -m pip install --user --upgrade scipy | ||
# Install PyTorch and related packages | ||
RUN python3 -m pip install --user torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118 | ||
|
||
COPY --chown=user:user requirements.txt /opt/app/ | ||
RUN python -m pip install --user -r requirements.txt | ||
# Copy nnUNet and install | ||
COPY --chown=user:user nnUNet/ /opt/app/nnUNet/ | ||
RUN python3 -m pip install --user -e nnUNet | ||
|
||
# Copy requirements and install | ||
COPY --chown=user:user requirements.txt /opt/app/ | ||
RUN python3 -m pip install --user -r requirements.txt | ||
|
||
# This is the checkpoint file, uncomment the line below and modify /local/path/to/the/checkpoint to your needs | ||
# Copy checkpoint and extract | ||
COPY --chown=user:user nnUNetTrainer__nnUNetPlans__3d_fullres.zip /opt/algorithm/checkpoint/nnUNet/ | ||
RUN python -c "import zipfile; import os; zipfile.ZipFile('/opt/algorithm/checkpoint/nnUNet/nnUNetTrainer__nnUNetPlans__3d_fullres.zip').extractall('/opt/algorithm/checkpoint/nnUNet/')" | ||
RUN python3 -c "import zipfile; import os; zipfile.ZipFile('/opt/algorithm/checkpoint/nnUNet/nnUNetTrainer__nnUNetPlans__3d_fullres.zip').extractall('/opt/algorithm/checkpoint/nnUNet/')" | ||
|
||
# Copy custom scripts | ||
COPY --chown=user:user custom_algorithm.py /opt/app/ | ||
COPY --chown=user:user process.py /opt/app/ | ||
COPY --chown=user:user calc_dice.py /opt/app/ | ||
|
||
# COPY --chown=user:user weights /opt/algorithm/checkpoint | ||
ENV nnUNet_results="/opt/algorithm/checkpoint/" | ||
ENV nnUNet_raw="/opt/algorithm/nnUNet_raw_data_base" | ||
ENV nnUNet_preprocessed="/opt/algorithm/preproc" | ||
# ENV ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS=64(nope!) | ||
# ENV nnUNet_def_n_proc=1 | ||
|
||
#ENTRYPOINT [ "python3", "-m", "process" ] | ||
|
||
ENV MKL_SERVICE_FORCE_INTEL=1 | ||
|
||
# Launches the script | ||
ENTRYPOINT python -m process $0 $@ | ||
# Launch the script | ||
ENTRYPOINT ["python3", "-m", "process"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,39 @@ | ||
# DMX Solution to HaNSeg Challenge | ||
# DMX Solution to HaNSeg | ||
|
||
The Head and Neck oragan-at-risk CT & MR segmentation challenge. Contribution to the Grand Challenge (MICCAI 2023) | ||
## Overview | ||
|
||
Challenge URL: **[HaN-Seg 2023 challenge](https://han-seg2023.grand-challenge.org/)** | ||
This repository contains scripts and tools for building a Docker algorithm, performing prediction on a test dataset, and calculating DSC (Dice Similarity Coefficient). Below are the steps to execute each of these tasks. | ||
|
||
This solution is based on: | ||
## Prerequisites | ||
|
||
- [ANTsPY](https://antspy.readthedocs.io/en/latest/) | ||
- [nnUNetv2](https://github.com/MIC-DKFZ/nnUNet/) | ||
- [Zhack47](https://github.com/Zhack47/HaNSeg-QuantIF) | ||
Make sure you have the following installed: | ||
- Docker | ||
- Python 3.9 | ||
- Necessary Python packages (can be installed using `requirements.txt` if provided) | ||
|
||
## Steps | ||
|
||
### 1. Build the Docker Algorithm | ||
|
||
To build the Docker algorithm, run the following command in your terminal: | ||
|
||
```sh | ||
sh test.sh | ||
``` | ||
|
||
### 2. Prediction on Test Dataset | ||
|
||
To perform predictions on the test dataset, execute the following command: | ||
```sh | ||
python3 process.py | ||
``` | ||
|
||
### 3. DSC Calculation | ||
|
||
To calculate the Dice Similarity Coefficient (DSC), use the following command: | ||
```sh | ||
python3 calc_dice.py | ||
``` | ||
|
||
## Contact | ||
Email: jaehwanhan12@gmail.com |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
#!/usr/bin/env bash | ||
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )" | ||
# docker build --no-cache -t hanseg2023algorithm "$SCRIPTPATH" | ||
docker build -t hanseg2023algorithm_dmx "$SCRIPTPATH" | ||
docker build -t hanseg2023algorithm_dmx:jhhan "$SCRIPTPATH" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import os, sys | ||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) | ||
|
||
import numpy as np | ||
import nrrd | ||
import pandas as pd | ||
|
||
LABEL_dict = { | ||
"background": 0, | ||
"A_Carotid_L": 1, | ||
"A_Carotid_R": 2, | ||
"Arytenoid": 3, | ||
"Bone_Mandible": 4, | ||
"Brainstem": 5, | ||
"BuccalMucosa": 6, | ||
"Cavity_Oral": 7, | ||
"Cochlea_L": 8, | ||
"Cochlea_R": 9, | ||
"Cricopharyngeus": 10, | ||
"Esophagus_S": 11, | ||
"Eye_AL": 12, | ||
"Eye_AR": 13, | ||
"Eye_PL": 14, | ||
"Eye_PR": 15, | ||
"Glnd_Lacrimal_L": 16, | ||
"Glnd_Lacrimal_R": 17, | ||
"Glnd_Submand_L": 18, | ||
"Glnd_Submand_R": 19, | ||
"Glnd_Thyroid": 20, | ||
"Glottis": 21, | ||
"Larynx_SG": 22, | ||
"Lips": 23, | ||
"OpticChiasm": 24, | ||
"OpticNrv_L": 25, | ||
"OpticNrv_R": 26, | ||
"Parotid_L": 27, | ||
"Parotid_R": 28, | ||
"Pituitary": 29, | ||
"SpinalCord": 30, | ||
} | ||
|
||
def load_nrrd(file_path): | ||
data, _ = nrrd.read(file_path) | ||
return data | ||
|
||
def dice_score(y_true, y_pred): | ||
eps = 1e-6 | ||
y_true = y_true.flatten() | ||
y_pred = y_pred.flatten() | ||
intersection = np.sum(y_true * y_pred) | ||
return (2. * intersection) / (np.sum(y_true) + np.sum(y_pred)) + eps | ||
|
||
|
||
def calculate_dice_scores(result_folder, gt_folder): | ||
data = [] | ||
result_files = [f for f in os.listdir(result_folder) if f.endswith('.nrrd')] | ||
|
||
for result_file in result_files: | ||
case_id = result_file.split('_IMG')[0] | ||
gt_file = f"{case_id}_all_rois.seg.nrrd" | ||
|
||
result_path = os.path.join(result_folder, result_file) | ||
gt_path = os.path.join(gt_folder, gt_file) | ||
|
||
if not os.path.exists(gt_path): | ||
print(f"Ground truth file not found for {result_file}") | ||
continue | ||
|
||
result_data = load_nrrd(result_path) | ||
gt_data = load_nrrd(gt_path) | ||
|
||
case_dice_scores = {"file_name": result_file} | ||
|
||
for label, label_index in LABEL_dict.items(): | ||
result_label = (result_data == label_index).astype(np.uint8) | ||
gt_label = (gt_data == label_index).astype(np.uint8) | ||
|
||
if np.sum(gt_label) == 0: | ||
case_dice_scores[label] = None | ||
else: | ||
score = dice_score(gt_label, result_label) | ||
case_dice_scores[label] = score | ||
|
||
# Calculate total mean DICE score for this case | ||
valid_scores = [score for score in case_dice_scores.values() if isinstance(score, (float, int))] | ||
total_dice_score = np.mean(valid_scores) if valid_scores else 0.0 | ||
case_dice_scores["total"] = total_dice_score | ||
|
||
data.append(case_dice_scores) | ||
print(f"Processed {result_file}") | ||
|
||
return data | ||
|
||
|
||
if __name__ == '__main__': | ||
result_folder = '/output/images/head_neck_oar' | ||
gt_folder = '/input/gt' | ||
|
||
data = calculate_dice_scores(result_folder, gt_folder) | ||
|
||
# Create a DataFrame and save to CSV | ||
df = pd.DataFrame(data) | ||
df = df[["file_name"] + list(LABEL_dict.keys()) + ["total"]] # Ensure columns are in the correct order | ||
csv_path = "/output/dice_scores.csv" | ||
df.to_csv(csv_path, index=False) | ||
|
||
print(f"CSV file saved to {csv_path}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.