forked from HansiZeng/RIPOR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrerank.py
693 lines (596 loc) · 31.8 KB
/
rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import os
import ujson
import gzip
import pickle
import random
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group, get_world_size
from torch.utils.data.distributed import DistributedSampler
import torch
from transformers import HfArgumentParser
import numpy as np
from .modeling.cross_encoder import CrossEncoder
from .dataset.dataset import (
PseudoQueryForScoreDataset,
QueryToSmtidRerankDataset,
TeacherRerankFromQidSmtidsDataset,
CrossEncRerankForSamePrefixPair,
RerankDataset
)
from .dataset.dataloader import (
CrossEncRerankDataLoader,
PseudoQueryForScoreDataLoader,
QueryToSmtidRerankLoader,
CrossEncRerankForSamePrefixPairLoader
)
from .tasks.reranker import Reranker
from .arguments import RerankArguments
from .utils.metrics import mrr_k, load_and_evaluate
from .utils.utils import sample_from_partitions, get_dataset_name
random.seed(4)
def ddp_setup():
init_process_group(backend="nccl")
def rerank_for_eval(args):
raise NotImplementedError
def rerank_for_create_trainset(args):
ddp_setup()
print("model_name_or_path: ", args.model_name_or_path)
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
#assert len(args.run_json_paths) == 1 and len(args.q_collection_paths) == 1
run_json_path = args.run_json_path
q_collection_path = args.q_collection_path
#assert os.path.dirname(run_json_path) == args.out_dir, (run_json_path, args.out_dir)
rerank_dataset = RerankDataset(run_json_path=run_json_path, document_dir=args.collection_path, query_dir=q_collection_path,
json_type=args.json_type)
rerank_loader = CrossEncRerankDataLoader(dataset=rerank_dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1,
sampler=DistributedSampler(rerank_dataset) if args.local_rank != -1 else None)
reranker = Reranker(model=model, dataloader=rerank_loader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
reranker.reranking(name=f"{args.local_rank}", use_fp16=True)
def rerank_for_create_trainset_2(args):
if os.path.exists(os.path.join(args.out_dir, "qid_pids_rerank_scores.train.json")):
print("old qid_pids_rerank_scores.train.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_pids_rerank_scores.train.json"))
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "rerank" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count(), (len(sub_rerank_paths), torch.cuda.device_count())
qid_to_rankdata = {}
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rankdata = ujson.load(fin)
if len(qid_to_rankdata) == 0:
qid_to_rankdata.update(sub_qid_to_rankdata)
else:
for qid, rankdata in sub_qid_to_rankdata.items():
if qid not in qid_to_rankdata:
qid_to_rankdata[qid] = rankdata
else:
qid_to_rankdata[qid].update(rankdata)
print("length of qids and avg rankdata length in qid_to_rankdata: {}, {}".format(
len(qid_to_rankdata), np.mean([len(xs) for xs in qid_to_rankdata.values()])))
qid_to_sorteddata = {}
for qid, rankdata in qid_to_rankdata.items():
qid_to_sorteddata[qid] = dict(sorted(rankdata.items(), key=lambda x: x[1], reverse=True))
with open(os.path.join(args.out_dir, "qid_docids_teacher_scores.train.json"), "w") as fout:
for qid, rankdata in qid_to_sorteddata.items():
example = {"qid": qid, "docids": [], "scores": []}
for i, (pid, score) in enumerate(rankdata.items()):
if i == 200:
break
example["docids"].append(pid)
example["scores"].append(score)
fout.write(ujson.dumps(example) + "\n")
print("end write to json")
for sub_path in sub_rerank_paths:
os.remove(os.path.join(args.out_dir, sub_path))
#other_qid_to_data = {}
#for qid, rankdata in qid_to_sorteddata.items():
# other_qid_to_data[int(qid)] = {int(k): v for k,v in rankdata.items()}
#with gzip.open(os.path.join(args.out_dir, "teacher_score.pkl.gz"), "wb") as fout:
# pickle.dump(other_qid_to_data, fout)
#print("end write to pickle")
def rerank_for_evaluate_2(args):
if args.local_rank <= 0:
if not os.path.exists(args.out_dir):
os.mkdir(args.out_dir)
if os.path.exists(os.path.join(args.out_dir, "qid_to_rerank_data.json")):
print("old qid_pids_rerank_scores.train.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_to_rerank_data.json"))
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "rerank" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
qid_to_rankdata = {}
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rankdata = ujson.load(fin)
if len(qid_to_rankdata) == 0:
qid_to_rankdata.update(sub_qid_to_rankdata)
else:
for qid, rankdata in sub_qid_to_rankdata.items():
if qid not in qid_to_rankdata:
qid_to_rankdata[qid] = rankdata
else:
qid_to_rankdata[qid].update(rankdata)
print("length of qids and avg rankdata length in qid_to_rankdata: {}, {}".format(
len(qid_to_rankdata), np.mean([len(xs) for xs in qid_to_rankdata.values()])))
with open(os.path.join(args.out_dir, "qid_to_rerank_data.json"), "w") as fout:
ujson.dump(qid_to_rankdata, fout)
for sub_path in sub_rerank_paths:
os.remove(os.path.join(args.out_dir, sub_path))
# evaluate
res = {}
args.eval_metrics = ujson.loads(args.eval_metrics)
print(args.eval_metrics)
for metric in args.eval_metrics:
res.update(load_and_evaluate(qrel_file_path=args.eval_qrel_path,
run_file_path=os.path.join(args.out_dir, "qid_to_rerank_data.json"),
metric=metric))
ujson.dump(res, open(os.path.join(args.out_dir, "rerank_perf.json"), "w"))
print(res)
def assign_scores_for_pseudo_queries(args):
ddp_setup()
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
dataset = PseudoQueryForScoreDataset(document_dir=args.collection_path, pseudo_queries_path=args.pseudo_queries_path,
docid_pseudo_qids_path=args.docid_pseudo_qids_path)
dataloader = PseudoQueryForScoreDataLoader(dataset=dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1,
sampler=DistributedSampler(dataset) if args.local_rank != -1 else None)
reranker = Reranker(model=model, dataloader=dataloader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
#partition = args.docid_pseudo_qids_path.split(".")[0].split("_")[-1]
#reranker.assign_scores_for_pseudo_queries(name=f"{partition}_{args.local_rank}", use_fp16=True)
reranker.assign_scores_for_pseudo_queries(name=f"{args.local_rank}", use_fp16=True)
def assign_scores_for_pseudo_queries_2(args):
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "pid_qids_rerank_scores" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
qid_to_rankdata = {}
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rankdata = ujson.load(fin)
if len(qid_to_rankdata) == 0:
qid_to_rankdata.update(sub_qid_to_rankdata)
else:
for qid, rankdata in sub_qid_to_rankdata.items():
if qid not in qid_to_rankdata:
qid_to_rankdata[qid] = rankdata
else:
qid_to_rankdata[qid].update(rankdata)
print("length of qids and avg rankdata length in pid_to_rankdata: {}, {}".format(
len(qid_to_rankdata), np.mean([len(xs) for xs in qid_to_rankdata.values()])))
with open(os.path.join(args.out_dir, "pid_qids_rerank_scores.json"), "w") as fout:
ujson.dump(qid_to_rankdata, fout)
def query_to_docid_rerank_for_qid_smtids(args):
ddp_setup()
with open(args.docid_to_smtid_path) as fin:
docid_to_smtid = ujson.load(fin)
docid_to_strsmtid = {}
for docid, smtid in docid_to_smtid.items():
assert smtid[0] == -1, smtid
str_smtid = "_".join([str(x) for x in smtid[1:]])
docid_to_strsmtid[docid] = str_smtid
# dataset and dataloader
dataset = QueryToSmtidRerankDataset(qid_docids_path=args.qid_docids_path,
queries_path=args.dev_queries_path,
docid_to_smtids=docid_to_smtid,
docid_to_strsmtid=docid_to_strsmtid)
dataloader = QueryToSmtidRerankLoader(dataset=dataset,
tokenizer_type=args.query_to_smtid_tokenizer_type,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1,
sampler=DistributedSampler(dataset) if args.local_rank != -1 else None)
# debug
"""
for i, batch in enumerate(dataloader):
print("query: ")
print(dataloader.tokenizer.batch_decode((batch["tokenized_query"]["input_ids"][:8])))
print("-"*100)
print("decoder_input_ids: ")
print(batch["tokenized_query"]["decoder_input_ids"][:8])
print("-"*100)
print("pair_ids: ")
print(batch["pair_ids"][:8])
print("-"*100)
print("labels: ")
print(batch["labels"][:8])
if i == 1:
break
print("="*100)
exit()
"""
model = T5SeqQueryToDocidEncoder.from_pretrained(args.pretrained_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
reranker = Reranker(model=model, dataloader=dataloader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
reranker.query_to_smtid_reranking(name=f"{args.local_rank}", use_fp16=False)
def query_to_docid_rerank_for_qid_smtids_2(args):
if os.path.exists(os.path.join(args.out_dir, "qid_smtids_rerank.json")):
print("old qid_smtids_rerank.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_smtids_rerank.json"))
qid_to_rankdata = {}
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "qid_smtids_rerank" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rankdata = ujson.load(fin)
if len(qid_to_rankdata) == 0:
qid_to_rankdata.update(sub_qid_to_rankdata)
else:
for qid, rankdata in sub_qid_to_rankdata.items():
if qid not in qid_to_rankdata:
qid_to_rankdata[qid] = rankdata
else:
qid_to_rankdata[qid].update(rankdata)
print("length of pids and avg rankdata length in pid_to_rankdata: {}, {}".format(
len(qid_to_rankdata), np.mean([len(xs) for xs in qid_to_rankdata.values()])))
with open(os.path.join(args.out_dir, "qid_smtids_rerank.json"), "w") as fout:
ujson.dump(qid_to_rankdata, fout)
for sub_path in sub_rerank_paths:
sub_path = os.path.join(args.out_dir, sub_path)
os.remove(sub_path)
with open(args.docid_to_smtid_path) as fin:
docid_to_smtid = ujson.load(fin)
docid_to_strsmtid = {}
for docid, smtid in docid_to_smtid.items():
assert smtid[0] == -1, smtid
str_smtid = "_".join([str(x) for x in smtid[1:]])
docid_to_strsmtid[docid] = str_smtid
with open(args.dev_qrels_path) as fin:
qrel_data = ujson.load(fin)
qid_to_relsmtid_data = {}
for qid in qrel_data:
qid_to_relsmtid_data[qid] = {}
for docid, s in qrel_data[qid].items():
rel_smtid = docid_to_strsmtid[docid]
qid_to_relsmtid_data[qid][rel_smtid] = s
mrr_at_10 = mrr_k(run=qid_to_rankdata, qrel=qid_to_relsmtid_data, k=10)
mrr_at_100 = mrr_k(run=qid_to_rankdata, qrel=qid_to_relsmtid_data, k=100)
with open(os.path.join(args.out_dir, "metric.json"), "w") as fout:
ujson.dump({
"mrr_at_10": mrr_at_10,
"mrr_at_100": mrr_at_100
}, fout)
def teacher_rerank_for_qid_smtids(args):
ddp_setup()
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
rerank_dataset = TeacherRerankFromQidSmtidsDataset(
qid_smtid_rank_path=args.qid_smtid_rank_path,
docid_to_smtids_path=args.docid_to_smtid_path,
queries_path=args.dev_queries_path,
collection_path=os.path.join(args.collection_path, "raw.tsv")
)
rerank_loader = CrossEncRerankDataLoader(dataset=rerank_dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1,
sampler=DistributedSampler(rerank_dataset) if args.local_rank != -1 else None)
assert args.out_dir in args.qid_smtid_rank_path, (args.out_dir, args.qid_smtid_rank_path)
reranker = Reranker(model=model, dataloader=rerank_loader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
reranker.reranking(name=f"teacher_{args.local_rank}", use_fp16=True)
def teacher_rerank_for_qid_smtids_2(args):
if os.path.exists(os.path.join(args.out_dir, "rerank_teacher.json")):
print("old rerank_teacher.json exisit.")
os.remove(os.path.join(args.out_dir, "rerank_teacher.json"))
qid_to_rankdata = {}
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "rerank_teacher" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rankdata = ujson.load(fin)
if len(qid_to_rankdata) == 0:
qid_to_rankdata.update(sub_qid_to_rankdata)
else:
for qid, rankdata in sub_qid_to_rankdata.items():
if qid not in qid_to_rankdata:
qid_to_rankdata[qid] = rankdata
else:
qid_to_rankdata[qid].update(rankdata)
print("length of pids and avg rankdata length in pid_to_rankdata: {}, {}".format(
len(qid_to_rankdata), np.mean([len(xs) for xs in qid_to_rankdata.values()])))
with open(os.path.join(args.out_dir, "rerank_teacher.json"), "w") as fout:
ujson.dump(qid_to_rankdata, fout)
for sub_path in sub_rerank_paths:
sub_path = os.path.join(args.out_dir, sub_path)
os.remove(sub_path)
def cross_encoder_rerank_for_same_prefix_docid(args):
ddp_setup()
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
if args.local_rank <= 0:
if not os.path.exists(args.out_dir):
os.mkdir(args.out_dir)
with open(args.docid_to_smtid_path) as fin:
docid_to_smtids = ujson.load(fin)
docid_to_smtid = {}
smtid_to_docids = {}
for docid, smtids in docid_to_smtids.items():
assert smtids[0] == -1, smtids
sid = "_".join([str(x) for x in smtids[1:]])
if sid not in smtid_to_docids:
smtid_to_docids[sid] = [docid]
else:
smtid_to_docids[sid] += [docid]
docid_to_smtid[docid] = sid
docid_to_smtids = None
qid_to_reldocids = {}
with open(args.train_qrels_path) as fin:
train_qrels_data = ujson.load(fin)
for qid, qrel_data in train_qrels_data.items():
for docid in qrel_data:
if qid not in qid_to_reldocids:
qid_to_reldocids[qid] = [docid]
else:
qid_to_reldocids[qid] += [docid]
qid_to_smtid_to_reldocids = {}
qid_to_smtid_to_docids = {}
for i, qid in enumerate(qid_to_reldocids):
qid_to_smtid_to_reldocids[qid] = {}
if i % get_world_size() == args.local_rank:
qid_to_smtid_to_docids[qid] = {}
for reldocid in qid_to_reldocids[qid]:
smtid = docid_to_smtid[reldocid]
if smtid not in qid_to_smtid_to_reldocids[qid]:
qid_to_smtid_to_reldocids[qid] = {smtid: [reldocid]}
else:
qid_to_smtid_to_reldocids[qid][smtid].append(reldocid)
if i % get_world_size() == args.local_rank:
neg_docids = random.sample(smtid_to_docids[smtid], k=min(50, len(smtid_to_docids[smtid])))
if smtid not in qid_to_smtid_to_docids[qid]:
qid_to_smtid_to_docids[qid] = {smtid: neg_docids} #{smtid: smtid_to_docids[smtid]}
else:
qid_to_smtid_to_docids[qid][smtid] = neg_docids #smtid_to_docids[smtid]
print("number of gpus = {}, current rank = {}".format(get_world_size(), args.local_rank))
print("length of qid_to_smtid_to_reldocids = {}, qid_to_smtid_to_docids = {}, ratio = {:.3f}".format(
len(qid_to_smtid_to_reldocids), len(qid_to_smtid_to_docids), len(qid_to_smtid_to_reldocids) / len(qid_to_smtid_to_docids)
))
rerank_dataset = CrossEncRerankForSamePrefixPair(qid_to_smtid_to_docids,
queries_path=args.train_queries_path,
collection_path=os.path.join(args.collection_path, "raw.tsv"))
rerank_loader = CrossEncRerankForSamePrefixPairLoader(dataset=rerank_dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1) # we sub-sample qid_to_reldocids here, so we don't need DistributedSampler
#sampler=DistributedSampler(rerank_dataset) if args.local_rank != -1 else None)
reranker = Reranker(model=model, dataloader=rerank_loader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
reranker.reranking_for_same_prefix_pair(name=f"{args.local_rank}", use_fp16=True)
def cross_encoder_rerank_for_same_prefix_docid_2(args):
if os.path.exists(os.path.join(args.out_dir, "qid_to_smtid_to_rerank.json")):
print("old qid_to_smtid_to_rerank.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_to_smtid_to_rerank.json"))
qid_to_smtid_to_rerank = {}
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "qid_to_smtid_to_rerank" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rerank = ujson.load(fin)
for qid in sub_qid_to_rerank:
for smtid in sub_qid_to_rerank[qid]:
if qid not in qid_to_smtid_to_rerank:
qid_to_smtid_to_rerank[qid] = {smtid: sub_qid_to_rerank[qid][smtid]}
else:
if smtid not in qid_to_smtid_to_rerank[qid]:
qid_to_smtid_to_rerank[qid][smtid] = sub_qid_to_rerank[qid][smtid]
else:
qid_to_smtid_to_rerank[qid][smtid] += sub_qid_to_rerank[qid][smtid]
sorted_rerank = {}
sorted_sample_rerank = {}
lenghts = []
num_pair = 0
#sample_num = 50
for qid in qid_to_smtid_to_rerank:
sorted_rerank[qid] = {}
sorted_sample_rerank[qid] = {}
for smtid in qid_to_smtid_to_rerank[qid]:
rerank_data = sorted(qid_to_smtid_to_rerank[qid][smtid], key=lambda x: x[1], reverse=True)
sorted_rerank[qid][smtid] = rerank_data
lenghts.append(len(rerank_data))
num_pair += 1
#if len(rerank_data) > sample_num:
# sorted_sample_rerank[qid][smtid] = sorted(sample_from_partitions(rerank_data, num_partitions=20, num_samples=sample_num),
# key=lambda x: x[1], reverse=True)
#else:
sorted_sample_rerank[qid][smtid] = rerank_data
print("number of qid_smtid example = {}, average length of docs for each pair = {}".format(num_pair, np.mean(lenghts)))
with open(os.path.join(args.out_dir, "qid_to_smtid_to_rerank.json"), "w") as fout:
ujson.dump(sorted_rerank, fout)
with open(os.path.join(args.out_dir, "qid_to_smtid_to_sampled_rerank.json"), "w") as fout:
ujson.dump(sorted_sample_rerank, fout)
for sub_path in sub_rerank_paths:
sub_path = os.path.join(args.out_dir, sub_path)
os.remove(sub_path)
def cross_encoder_rerank_for_same_reldocid_hard_docids(args):
ddp_setup()
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
if args.local_rank <= 0:
if not os.path.exists(args.out_dir):
os.mkdir(args.out_dir)
with open(args.qid_to_reldocid_hard_docids_path) as fin:
qid_to_reldocid_hard_docids = ujson.load(fin)
sampled_data = {}
for i, qid in enumerate(qid_to_reldocid_hard_docids):
if i % get_world_size() == args.local_rank:
sampled_data[qid] = qid_to_reldocid_hard_docids[qid]
print("size of sampled_data = {}, original data = {}, ratio = {:.3f}".format(
len(sampled_data), len(qid_to_reldocid_hard_docids), len(qid_to_reldocid_hard_docids) / len(sampled_data)
))
rerank_dataset = CrossEncRerankForSamePrefixPair(sampled_data,
queries_path=args.train_queries_path,
collection_path=os.path.join(args.collection_path, "raw.tsv"))
rerank_loader = CrossEncRerankForSamePrefixPairLoader(dataset=rerank_dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1)
#sampler=DistributedSampler(rerank_dataset) if args.local_rank != -1 else None)
reranker = Reranker(model=model, dataloader=rerank_loader,
config={"out_dir": args.out_dir},
write_to_disk=True,
local_rank=args.local_rank)
reranker.reranking_for_same_prefix_pair(name=f"{args.local_rank}", use_fp16=True, prefix_name="qid_to_reldocid_to_hard_rerank")
def cross_encoder_rerank_for_same_reldocid_hard_docids_2(args):
if os.path.exists(os.path.join(args.out_dir, "qid_to_reldocid_to_hard_rerank.json")):
print("old qid_to_reldocid_to_hard_rerank.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_to_reldocid_to_hard_rerank.json"))
qid_to_smtid_to_rerank = {}
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "qid_to_reldocid_to_hard_rerank" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rerank = ujson.load(fin)
for qid in sub_qid_to_rerank:
for smtid in sub_qid_to_rerank[qid]:
if qid not in qid_to_smtid_to_rerank:
qid_to_smtid_to_rerank[qid] = {smtid: sub_qid_to_rerank[qid][smtid]}
else:
if smtid not in qid_to_smtid_to_rerank[qid]:
qid_to_smtid_to_rerank[qid][smtid] = sub_qid_to_rerank[qid][smtid]
else:
qid_to_smtid_to_rerank[qid][smtid] += sub_qid_to_rerank[qid][smtid]
sorted_rerank = {}
sorted_sample_rerank = {}
lenghts = []
num_pair = 0
sample_num = 200
for qid in qid_to_smtid_to_rerank:
sorted_rerank[qid] = {}
sorted_sample_rerank[qid] = {}
for smtid in qid_to_smtid_to_rerank[qid]:
rerank_data = sorted(qid_to_smtid_to_rerank[qid][smtid], key=lambda x: x[1], reverse=True)
sorted_rerank[qid][smtid] = rerank_data
lenghts.append(len(rerank_data))
num_pair += 1
if len(rerank_data) > sample_num:
sorted_sample_rerank[qid][smtid] = sorted(sample_from_partitions(rerank_data, num_partitions=20, num_samples=sample_num),
key=lambda x: x[1], reverse=True)
print("number of qid_smtid example = {}, average length of docs for each pair = {}".format(num_pair, np.mean(lenghts)))
with open(os.path.join(args.out_dir, "qid_to_reldocid_to_hard_rerank.json"), "w") as fout:
ujson.dump(sorted_rerank, fout)
with open(os.path.join(args.out_dir, "qid_to_reldocid_to_sampled_hard_rerank.json"), "w") as fout:
ujson.dump(sorted_sample_rerank, fout)
for sub_path in sub_rerank_paths:
sub_path = os.path.join(args.out_dir, sub_path)
os.remove(sub_path)
def cross_encoder_rerank_for_qid_smtid_docids(args):
ddp_setup()
print("model_name_or_path for cross_encoder: ", args.model_name_or_path)
model = CrossEncoder(args.model_name_or_path)
model.to(args.local_rank)
with open(args.qid_smtid_docids_path) as fin:
qid_to_smtid_to_docids = ujson.load(fin)
print("qid_smtid_docids_path: ", args.qid_smtid_docids_path)
sampled_data = {}
for i, qid in enumerate(qid_to_smtid_to_docids):
if i % get_world_size() == args.local_rank:
sampled_data[qid] = qid_to_smtid_to_docids[qid]
print("size of sampled_data = {}, original data = {}, ratio = {:.3f}".format(
len(sampled_data), len(qid_to_smtid_to_docids), len(qid_to_smtid_to_docids) / len(sampled_data)
))
rerank_dataset = CrossEncRerankForSamePrefixPair(sampled_data,
queries_path=args.train_queries_path,
collection_path=os.path.join(args.collection_path, "raw.tsv"))
rerank_loader = CrossEncRerankForSamePrefixPairLoader(dataset=rerank_dataset,
tokenizer_type=args.model_name_or_path,
max_length=args.max_length,
batch_size=args.batch_size,
shuffle=False, num_workers=1)
reranker = Reranker(model=model, dataloader=rerank_loader,
config=None,
local_rank=args.local_rank,
write_to_disk=False)
qid_to_smtid_to_rankdata = reranker.reranking_for_same_prefix_pair(use_fp16=True)
path_prefix = args.qid_smtid_docids_path.split(".")[0]
out_path = path_prefix + f"_teacher_score_{args.local_rank}.train.json"
with open(out_path, "w") as fout:
ujson.dump(qid_to_smtid_to_rankdata, fout)
def cross_encoder_rerank_for_qid_smtid_docids_2(args):
if os.path.exists(os.path.join(args.out_dir, "qid_smtid_docids_teacher_score.train.json")):
print("old qid_smtid_docids_teacher_score.train.json exisit.")
os.remove(os.path.join(args.out_dir, "qid_smtid_docids_teacher_score.train.json"))
qid_to_smtid_to_rerank = {}
sub_rerank_paths = [p for p in os.listdir(args.out_dir) if "qid_smtid_docids_teacher_score" in p]
assert len(sub_rerank_paths) == torch.cuda.device_count()
for sub_path in sub_rerank_paths:
with open(os.path.join(args.out_dir, sub_path)) as fin:
sub_qid_to_rerank = ujson.load(fin)
for qid in sub_qid_to_rerank:
for smtid in sub_qid_to_rerank[qid]:
if qid not in qid_to_smtid_to_rerank:
qid_to_smtid_to_rerank[qid] = {smtid: sub_qid_to_rerank[qid][smtid]}
else:
if smtid not in qid_to_smtid_to_rerank[qid]:
qid_to_smtid_to_rerank[qid][smtid] = sub_qid_to_rerank[qid][smtid]
else:
qid_to_smtid_to_rerank[qid][smtid] += sub_qid_to_rerank[qid][smtid]
print("total size of qids = {}".format(len(qid_to_smtid_to_rerank)))
print("average smtids per qid = {:.3f}".format(np.mean([len(xs) for xs in qid_to_smtid_to_rerank.values()])))
with open(os.path.join(args.out_dir, "qid_smtid_docids_teacher_score.train.json"), "w") as fout:
ujson.dump(qid_to_smtid_to_rerank, fout)
for sub_path in sub_rerank_paths:
sub_path = os.path.join(args.out_dir, sub_path)
os.remove(sub_path)
if __name__ == "__main__":
parser = HfArgumentParser((RerankArguments))
args = parser.parse_args_into_dataclasses()[0]
if args.task == "rerank_for_eval":
rerank_for_eval(args)
elif args.task == "rerank_for_create_trainset":
rerank_for_create_trainset(args)
elif args.task == "rerank_for_create_trainset_2":
rerank_for_create_trainset_2(args)
elif args.task == "rerank_for_evaluate_2":
rerank_for_evaluate_2(args)
elif args.task == "assign_scores_for_pseudo_queries":
assign_scores_for_pseudo_queries(args)
elif args.task == "assign_scores_for_pseudo_queries_2":
assign_scores_for_pseudo_queries_2(args)
elif args.task == "query_to_docid_rerank_for_qid_smtids":
query_to_docid_rerank_for_qid_smtids(args)
elif args.task == "query_to_docid_rerank_for_qid_smtids_2":
query_to_docid_rerank_for_qid_smtids_2(args)
elif args.task == "teacher_rerank_for_qid_smtids":
teacher_rerank_for_qid_smtids(args)
elif args.task == "teacher_rerank_for_qid_smtids_2":
teacher_rerank_for_qid_smtids_2(args)
elif args.task == "cross_encoder_rerank_for_same_prefix_docid":
cross_encoder_rerank_for_same_prefix_docid(args)
elif args.task == "cross_encoder_rerank_for_same_prefix_docid_2":
cross_encoder_rerank_for_same_prefix_docid_2(args)
elif args.task == "cross_encoder_rerank_for_same_reldocid_hard_docids":
cross_encoder_rerank_for_same_reldocid_hard_docids(args)
elif args.task == "cross_encoder_rerank_for_same_reldocid_hard_docids_2":
cross_encoder_rerank_for_same_reldocid_hard_docids_2(args)
elif args.task == "cross_encoder_rerank_for_qid_smtid_docids":
cross_encoder_rerank_for_qid_smtid_docids(args)
elif args.task == "cross_encoder_rerank_for_qid_smtid_docids_2":
cross_encoder_rerank_for_qid_smtid_docids_2(args)
else:
raise NotImplementedError