forked from HansiZeng/RIPOR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
t5_generative_retriever.py
1022 lines (862 loc) · 45.4 KB
/
t5_generative_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import math
import os
import warnings
from typing import Optional, Tuple, Union, List, Iterable, Callable
from dataclasses import dataclass
import inspect
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
import torch.distributed as dist
import numpy as np
from transformers import T5PreTrainedModel
from transformers.models.t5.modeling_t5 import T5Config, T5Stack
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers.utils import logging
from transformers.models.t5.configuration_t5 import T5Config
import transformers
import torch.nn as nn
import torch
import copy
import warnings
from .customized_modeling_t5 import DecoderT5Stack
logger = logging.get_logger(__name__)
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
EPSILON = np.finfo(np.float32).tiny
@dataclass
class T5GenRetModelOutput(Seq2SeqLMOutput):
decoder_last_hidden_state: torch.FloatTensor = None
list_decoder_embeds: Tuple[torch.FloatTensor] = None
class T5forDocIDConfig(T5Config):
def __init__(self,
decoder_vocab_sizes= [256 for _ in range(32)],
# 5_000, 5_000, 5_000, 5_000, 5_000, 5_000, 5_000, 5_000
#[50_000, 50_000, 50_000, 50_000], #[100_000, 100_000],
decoding=False,
decoder_start_token_path="./t5_decoder_start_token_embeds/t5-base.npy",
apply_decoder_t5_stack=False,
scaleup_output_hidden=False,
shared_output_input_embeds=True,
**kwargs):
super().__init__(**kwargs)
self.decoder_vocab_sizes = decoder_vocab_sizes
self.decoder_start_token_path = decoder_start_token_path
self.tie_word_embeddings = False
self.decoding = decoding
self.max_decoder_length = len(decoder_vocab_sizes)
self.apply_decoder_t5_stack=apply_decoder_t5_stack
self.scaleup_output_hidden=scaleup_output_hidden
self.shared_output_input_embeds = shared_output_input_embeds
assert self.apply_decoder_t5_stack == False
# base model
class T5ForDocIDGeneration(T5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
r"lm_head.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: T5forDocIDConfig):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
if config.apply_decoder_t5_stack:
self.decoder = DecoderT5Stack(decoder_config, embed_tokens=None)
else:
self.decoder = T5Stack(decoder_config, embed_tokens=None)
# create embeds
self.list_decoder_embeds = nn.ModuleList([
nn.Embedding(vocab_size, config.d_model) for vocab_size in config.decoder_vocab_sizes
])
if not config.shared_output_input_embeds:
self.list_output_embeds = nn.ModuleList([
nn.Embedding(vocab_size, config.d_model) for vocab_size in config.decoder_vocab_sizes
])
self.num_decoder_embeds = len(self.list_decoder_embeds)
self.start_token_embed = nn.Parameter(torch.randn(1, 1, config.d_model))
# Initialize weights and apply final processing
self.post_init()
if config.num_decoder_layers == 12 and config.num_heads == 12:
#print("this is the t5-base model")
assert "t5-base" in config.decoder_start_token_path, config.decoder_start_token_path
np_embed = torch.from_numpy(np.load(config.decoder_start_token_path)).float()
assert np_embed.size() == self.start_token_embed.data.size()
self.start_token_embed.data = np_embed
elif config.num_decoder_layers == 24 and config.num_heads == 16:
print("this is the t5-large model")
assert "t5-large" in config.decoder_start_token_path, config.decoder_start_token_path
np_embed = torch.from_numpy(np.load(config.decoder_start_token_path)).float()
assert np_embed.size() == self.start_token_embed.data.size()
self.start_token_embed.data = np_embed
elif config.num_decoder_layers == 24 and config.num_heads == 32:
print("this is the t5-3b model")
assert "t5-3b" in config.decoder_start_token_path, config.decoder_start_token_path
np_embed = torch.from_numpy(np.load(config.decoder_start_token_path)).float()
assert np_embed.size() == self.start_token_embed.data.size()
self.start_token_embed.data = np_embed
else:
raise ValueError("the model with decoer layers {} is not supported.".format(config.num_decoder_layers))
# Model parallel
self.model_parallel = False
self.device_map = None
def parallelize(self, device_map=None):
warnings.warn(
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return None
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_decoder_inputs_embeds(self, decoder_input_ids: Optional[torch.LongTensor]):
"""
case 1: [[-1], [-1]]
case 2: [[-1, 24], [-1, 0]]
"""
input_shape = decoder_input_ids.size()
batch_size, seq_length = input_shape
assert seq_length <= self.num_decoder_embeds
start_token_embeds = self.start_token_embed.expand(batch_size, 1, -1) #[bz, 1, d_model]
assert decoder_input_ids[0,0] == -1 or decoder_input_ids[0,0] == 0
if seq_length == 1:
input_embeds = start_token_embeds
else:
input_embeds = [start_token_embeds]
for i in range(1, seq_length):
embeds = self.list_decoder_embeds[i-1](decoder_input_ids[:, i]).unsqueeze(1) #[bz, 1, d_model]
input_embeds.append(embeds)
input_embeds = torch.cat(input_embeds, dim=1)
return input_embeds
def get_decoder_mul_inputs_embeds(self, decoder_input_ids: Optional[torch.LongTensor]):
"""
Args:
[bz, seq_len, mul_size]
case 1: [
[[-1,-1]],
[[-1,-1]]
]
case 2: [
[[-1, -1], [2, 4]],
[[-1, -1], [3, 1]],
]
Returns:
[bz, seq_len, d_model]
"""
assert decoder_input_ids.dim() == 3
bz, seq_length, mul_size = decoder_input_ids.size()
assert seq_length <= self.num_decoder_embeds
start_token_embeds = self.start_token_embed.expand(bz, 1, -1) #[bz, 1, d_model]
assert decoder_input_ids[0,0,0] == -1 or decoder_input_ids[0,0,0] == 0
if seq_length == 1:
input_embeds = start_token_embeds
else:
input_embeds = [start_token_embeds]
for i in range(1, seq_length):
embed_layer = self.list_decoder_embeds[i-1]
step_input_ids = decoder_input_ids[:, i, :].clone() #[bz, mul_size]
embeds = embed_layer[step_input_ids].mean(dim=1).unsqueeze(1) # [bz, mul_size, d_model] --> [bz, 1, d_model]
input_embeds.append(embeds)
input_embeds = torch.cat(input_embeds, dim=1)
return input_embeds
def get_lm_logits(self, sequence_output):
# sequence_output: [bz, seq_length, d_model]
# lm_logits: list of [bz, vocab_size], the list length is max_seq_length
lm_logits = []
for i in range(sequence_output.size(1)):
if self.config.shared_output_input_embeds:
logits = (sequence_output[:, i, :] @ self.list_decoder_embeds[i].weight.t())
else:
logits = (sequence_output[:, i, :] @ self.list_output_embeds[i].weight.t())
lm_logits.append(logits)
return lm_logits
def assign_decoder_embed(self, path, idx):
embed = torch.from_numpy(np.load(path)).float()
assigned_embed = self.list_decoder_embeds[idx].weight.data
#assert embed.size() == assigned_embed.size(), (embed.size(), assigned_embed.size())
assert embed.dtype == assigned_embed.dtype, (embed.dtype, assigned_embed.dtype)
if embed.size() == assigned_embed.size():
self.list_decoder_embeds[idx].weight.data = copy.deepcopy(embed)
elif embed.size()[0] < assigned_embed.size()[0]:
embed.size()[1] == assigned_embed.size()[1], (embed.size()[1], assigned_embed.size()[1])
self.list_decoder_embeds[idx].weight.data[:embed.size()[0], :] = copy.deepcopy(embed)
else:
raise ValueError("embed's shape: {} should no larger than assigned_embed'shape: {}".format(
embed.size(), assigned_embed.szie()
))
if not self.config.shared_output_input_embeds:
self.list_output_embeds[idx].weight.data = copy.deepcopy(embed)
def resize_and_assign_decoder_embed(self, path, idx):
if isinstance(path, str):
embed = torch.from_numpy(np.load(path)).float()
elif isinstance(path, torch.Tensor):
embed = path
else:
raise ValueError(f"the {path} doesn't have valid type.")
print("the shape of new assigned embed: ", embed.shape)
self.list_decoder_embeds[idx].weight.data = copy.deepcopy(embed)
if not self.config.shared_output_input_embeds:
self.list_output_embeds[idx].weight.data = copy.deepcopy(embed)
self.config.decoder_vocab_sizes[idx] = len(embed)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_list_decoder_embeds: Optional[bool] = False,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
#decoder_input_ids = self._shift_right(labels)
raise NotImplementedError
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
if decoder_input_ids.dim() == 2:
decoder_inputs_embeds = self.get_decoder_inputs_embeds(decoder_input_ids)
elif decoder_input_ids.dim() == 3:
decoder_inputs_embeds = self.get_decoder_mul_inputs_embeds(decoder_input_ids)
else:
raise ValueError(f"decoder_input_ids: {decoder_input_ids.size()} shape is not valid")
decoder_outputs = self.decoder(
input_ids=None,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
#if self.config.tie_word_embeddings: # we remove this anyway
if self.config.scaleup_output_hidden:
sequence_output = sequence_output * (self.model_dim**-0.5) #[bz, seq_length, d_model]
assert sequence_output.size(1) == decoder_input_ids.size(1), (sequence_output.size(1), decoder_input_ids.size(1))
lm_logits = None
if self.config.decoding:
lm_logits = self.get_lm_logits(sequence_output)
if not return_dict:
raise NotImplementedError
return T5GenRetModelOutput(
loss=None,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_last_hidden_state=sequence_output,
list_decoder_embeds=tuple(self.list_decoder_embeds) if return_list_decoder_embeds else None
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
# t5_dense_encoder
class T5DocIDGenEncoder(nn.Module):
def __init__(self, model_name_or_path, model_args=None, ):
super().__init__()
config = T5forDocIDConfig().from_pretrained(model_name_or_path)
config.decoding = False
self.base_model = T5ForDocIDGeneration.from_pretrained(model_name_or_path, config=config)
self.config = config
self.model_args = model_args
def forward(self, **inputs):
return self.encode(**inputs)
def doc_encode(self, **inputs):
return self.encode(**inputs)
def query_encode(self, **inputs):
return self.encode(**inputs)
def encode(self, input_ids, attention_mask, decoder_input_ids, return_decoder_last_hidden_state=False):
assert decoder_input_ids.size(1) <= self.config.max_decoder_length
idx = decoder_input_ids.size(1) - 1
model_output = self.base_model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)
reps = model_output.decoder_last_hidden_state[:, idx, :] #[bz, d_model]
if return_decoder_last_hidden_state:
return reps, model_output.decoder_last_hidden_state
else:
return reps
def save_pretrained(self, save_dir):
self.base_model.save_pretrained(save_dir)
@classmethod
def from_pretrained(cls, model_name_or_path=None, model_args=None):
return cls(model_name_or_path, model_args)
def assign_decoder_embed(self, path, idx):
self.base_model.assign_decoder_embed(path, idx)
def resize_and_assign_decoder_embed(self, path, idx):
self.base_model.resize_and_assign_decoder_embed(path, idx)
class T5SeqPretrainEncoder(T5DocIDGenEncoder):
def __init__(self, model_name_or_path, model_args=None):
super().__init__(model_name_or_path, model_args)
self.rank_loss = nn.MSELoss()
self.commit_loss = nn.CrossEntropyLoss()
def doc_encode(self, **inputs):
text_reps = self.base_model(**inputs).decoder_last_hidden_state
last_idx = text_reps.size(1) - 1
rep = text_reps[:, last_idx, :]
return rep
def query_encode(self, **inputs):
return self.doc_encode(**inputs)
def get_rank_loss(self, pq_last_rep, nq_last_rep,
pdoc_last_rep, ndoc_last_rep,
teacher_pos_score, teacher_neg_score,
pq_prev_reps=None, nq_prev_reps=None,
pos_prev_smtids=None, neg_prev_smtids=None):
if pq_prev_reps is None:
assert nq_prev_reps is None and pos_prev_smtids is None and neg_prev_smtids is None
else:
raise NotImplementedError
bz, prev_len = pos_prev_smtids.size()
pq_prev_reps = pq_prev_reps.view(bz*prev_len, -1)
nq_prev_reps = nq_prev_reps.view(bz*prev_len, -1)
pdoc_pvcen_reps = []
ndoc_pvcen_reps = []
for i in range(prev_len):
embed_layer = self.base_model.list_decoder_embeds[i]
pdoc_pvcen_reps.append(embed_layer(pos_prev_smtids[:, i].clone()).unsqueeze(1))
ndoc_pvcen_reps.append(embed_layer(neg_prev_smtids[:, i].clone()).unsqueeze(1))
pdoc_pvcen_reps = torch.cat(pdoc_pvcen_reps, dim=1).view(bz*prev_len, -1)
ndoc_pvcen_reps = torch.cat(ndoc_pvcen_reps, dim=1).view(bz*prev_len, -1)
with torch.no_grad():
pos_prev_logit = (pq_prev_reps * pdoc_pvcen_reps).sum(dim=-1).view(bz, prev_len).sum(dim=-1) #[bz]
neg_prev_logit = (nq_prev_reps * ndoc_pvcen_reps).sum(dim=-1).view(bz, prev_len).sum(dim=-1) #[bz]
pos_last_logit = (pq_last_rep * pdoc_last_rep).sum(dim=-1)
neg_last_logit = (nq_last_rep * ndoc_last_rep).sum(dim=-1)
if pq_prev_reps is None:
margin = pos_last_logit - neg_last_logit
else:
raise NotImplementedError
margin = (pos_prev_logit + pos_last_logit) - (neg_prev_logit + neg_last_logit)
if teacher_pos_score is not None and teacher_neg_score is not None:
teacher_margin = teacher_pos_score - teacher_neg_score
loss = self.rank_loss(margin, teacher_margin)
else:
loss = torch.log(1 + torch.exp(-margin)).mean()
return loss
def get_commit_loss(self,
pq_prev_reps,
pd_prev_reps,
nd_prev_reps,
pos_prev_smtids,
neg_prev_smtids):
"""
reps: [bz, smtid_len-1, d_model]
smtids: [bz, smtid_len-1] or [bz, smtid_len-1, mul_size]
"""
assert pos_prev_smtids.dim() == neg_prev_smtids.dim()
hard_label = True
if pos_prev_smtids.dim() == 2:
pos_doc_labels = pos_prev_smtids.clone()
neg_doc_labels = neg_prev_smtids.clone()
pos_query_labels = pos_doc_labels.clone()
elif pos_prev_smtids.dim() == 3:
hard_label = False
vocab_size = self.base_model.list_decoder_embeds[0].weight.size(0)
bz, prev_len, mul_size = pos_prev_smtids.size()
pos_prev_smtids = pos_prev_smtids.view(bz*prev_len, mul_size)
pos_doc_labels = torch.zeros((bz*prev_len, vocab_size)).to(pos_prev_smtids.device)
pos_doc_labels = pos_doc_labels.scatter_(1, pos_prev_smtids, 1).view(bz, prev_len, mul_size)
neg_prev_smtids = neg_prev_smtids.view(bz*prev_len, mul_size)
neg_doc_labels = torch.zeros((bz*prev_len, vocab_size)).to(neg_prev_smtids)
neg_doc_labels = neg_doc_labels.scatter_(1, neg_prev_smtids, 1).view(bz, prev_len, vocab_size)
pos_query_labels = pos_doc_labels.clone()
else:
raise ValueError("pos_doc_labels with size = {} is not valid".format(pos_prev_smtids.dim()))
all_labels = [pos_doc_labels, neg_doc_labels, pos_query_labels]
all_reps = [pd_prev_reps, nd_prev_reps, pq_prev_reps]
loss = 0.
bz, prev_len, _ = pq_prev_reps.size()
for reps, labels in zip(all_reps, all_labels):
logits = []
for i in range(reps.size(1)):
embed_weight = self.base_model.list_decoder_embeds[i].weight
logits.append((reps[:, i].clone() @ embed_weight.t()).view(bz, 1, -1))
logits = torch.cat(logits, dim=1).view(bz*prev_len, -1)
if hard_label:
labels = labels.view(bz*prev_len)
else:
labels = labels.view(bz*prev_len, vocab_size)
print("soft_label_size: ", (labels != 0.).sum(dim=-1).view(-1, 1))
labels = labels / (labels != 0.).sum(dim=-1).view(-1, 1)
loss += self.commit_loss(logits, labels)
return loss
def cond_prev_smtid_query_doc_score(self, **inputs):
"""
tokenized_query: [bz, seq_length]
tokenized_doc: [bz, seq_length]
prev_smtids: [bz, smtid_length-1]
"""
query_reps = self.base_model(**inputs["tokenized_query"]).decoder_last_hidden_state
doc_reps = self.base_model(**inputs["tokenized_doc"]).decoder_last_hidden_state
bz, smtid_len, _ = query_reps.size()
last_idx = smtid_len - 1
prev_len = smtid_len - 1
query_last_rep = query_reps[:, last_idx, :] #[bz, d_model]
doc_last_rep = doc_reps[:, last_idx, :] #[bz, d_model]
if last_idx == 0:
last_logit = torch.sum(query_last_rep * doc_last_rep, dim=-1) #[bz]
return last_logit
else:
prev_smtids = inputs["prev_smtids"]
assert prev_len == prev_smtids.size(1), (prev_len, prev_smtids)
doc_pvcen_reps = []
for i in range(prev_len):
embed_layer = self.base_model.list_decoder_embeds[i]
doc_pvcen_reps.append(embed_layer(prev_smtids[:, i].clone()).unsqueeze(1)) #[bz, 1, d_model]
doc_pvcen_reps = torch.cat(doc_pvcen_reps, dim=1).view(bz*prev_len, -1)
query_pv_reps = query_reps[:, :last_idx, :].clone() #[bz, prev_len, d_model]
pv_logit = torch.sum(query_pv_reps.view(bz*prev_len, -1) * doc_pvcen_reps, dim=-1).view(bz, prev_len).sum(dim=-1) #[bz]
last_logit = torch.sum(query_last_rep * doc_last_rep, dim=-1) #[bz]
return pv_logit + last_logit
def forward(self, **inputs):
"""
tokenized_pos_query: [bz, seq_length]
tokenized_neg_query: [bz, seq_length]
tokenized_pos_doc: [bz, seq_length]
tokenized_neg_doc: [bz, seq_length]
Optional:
pos_prev_smtids: [bz, smtid_length-1]
neg_prev_smtids: [bz, smtid_length-1]
"""
pos_query_reps = self.base_model(**inputs["tokenized_pos_query"]).decoder_last_hidden_state # [bz, smtid_length, d_model]
neg_query_reps = self.base_model(**inputs["tokenized_neg_query"]).decoder_last_hidden_state
pos_doc_reps = self.base_model(**inputs["tokenized_pos_doc"]).decoder_last_hidden_state
neg_doc_reps = self.base_model(**inputs["tokenized_neg_doc"]).decoder_last_hidden_state
last_idx = pos_query_reps.size(1) - 1
# check
if pos_query_reps.size(1) == 1:
"pos_prev_smtids" not in inputs and "neg_prev_smtids" not in inputs
else:
"pos_prev_smtids" in inputs and "neg_prev_smtids" in inputs
pq_last_rep = pos_query_reps[:, last_idx, :].clone()
nq_last_rep = neg_query_reps[:, last_idx, :].clone()
pdoc_last_rep = pos_doc_reps[:, last_idx, :].clone()
ndoc_last_rep = neg_doc_reps[:, last_idx, :].clone()
if pos_query_reps.size(1) == 1:
rank_loss = self.get_rank_loss(pq_last_rep=pq_last_rep, nq_last_rep=nq_last_rep,
pdoc_last_rep=pdoc_last_rep, ndoc_last_rep=ndoc_last_rep,
teacher_pos_score=inputs["teacher_pos_score"],
teacher_neg_score=inputs["teacher_neg_score"])
else:
pq_prev_reps = pos_query_reps[:, :last_idx, :].clone()
nq_prev_reps = None #neg_query_reps[:, :last_idx, :].clone()
rank_loss = self.get_rank_loss(pq_last_rep=pq_last_rep, nq_last_rep=nq_last_rep,
pdoc_last_rep=pdoc_last_rep, ndoc_last_rep=ndoc_last_rep,
teacher_pos_score=inputs["teacher_pos_score"],
teacher_neg_score=inputs["teacher_neg_score"])
#pq_prev_reps=pq_prev_reps, nq_prev_reps=nq_prev_reps,
#pos_prev_smtids=inputs["pos_prev_smtids"], neg_prev_smtids=inputs["neg_prev_smtids"])
if pos_query_reps.size(1) == 1:
return {
"rank": rank_loss
}
else:
pd_prev_reps = pos_doc_reps[:, :last_idx, :].clone()
nd_prev_reps = neg_doc_reps[:, :last_idx, :].clone()
commit_loss = self.get_commit_loss(pq_prev_reps=pq_prev_reps,
pd_prev_reps=pd_prev_reps,
nd_prev_reps=nd_prev_reps,
pos_prev_smtids=inputs["pos_prev_smtids"].clone(),
neg_prev_smtids=inputs["neg_prev_smtids"].clone())
return {
"commit": commit_loss,
"rank": rank_loss
}
# T5Seq
class T5SeqAQEncoder(torch.nn.Module):
def __init__(self, model_name_or_path, shared_output_input_embeds, multi_vocab_sizes=None):
super().__init__()
config = T5forDocIDConfig().from_pretrained(model_name_or_path)
config.decoding = False
if shared_output_input_embeds is not None:
assert shared_output_input_embeds in [False, True]
config.shared_output_input_embeds = shared_output_input_embeds
self.base_model = T5ForDocIDGeneration.from_pretrained(model_name_or_path, config=config)
self.config = config
self.model_args = None # incompatible with previous models
def query_encode(self, **inputs):
text_reps = self.base_model(**inputs).decoder_last_hidden_state
last_idx = text_reps.size(1) - 1
assert last_idx == 0
rep = text_reps[:, last_idx, :]
return rep
def rerank_forward(self, **inputs):
query_embeds = self.base_model(**inputs["tokenized_query"]).decoder_last_hidden_state #[bz, smtid_length, d_model]
doc_embeds = self.decode(inputs["doc_encoding"]) #[bz, smtid_length, d_model]
return (query_embeds * doc_embeds).sum(dim=-1).sum(dim=-1)
def rerank_forward_for_sanity_check(self, **inputs):
"""
Args:
query_embeds: [bz, seq_length] + [bz, smtid_length]
doc_encodings: [bz, smtid_length]
"""
query_embeds = self.base_model(**inputs["tokenized_query"]).decoder_last_hidden_state[:, 0, :].unsqueeze(1) #[bz, 1, d_model]
doc_embeds = self.decode(inputs["doc_encodings"]) #[bz, smtid_length,d_model]
return (query_embeds * doc_embeds).sum(dim=-1).sum(dim=-1)
def decode(self, text_encodings, summation=False):
"""
Args:
text_encodings: [bz, smtid_length]
Returns:
text_embeds: [bz, smtid_length, d_model] or [bz, d_model] if summation=True
"""
text_embeds = []
bz, smtid_length = text_encodings.size()
for i in range(smtid_length):
if self.config.shared_output_input_embeds:
text_embeds.append(self.base_model.list_decoder_embeds[i](text_encodings[:, i].clone()).unsqueeze(1))
else:
text_embeds.append(self.base_model.list_output_embeds[i](text_encodings[:, i].clone()).unsqueeze(1))
text_embeds = torch.cat(text_embeds, dim=1) #[bz, smtid_length, d_model]
if summation:
return text_embeds.sum(dim=1)
return text_embeds
def assign_output_embeds(self, code_embeddings):
if self.config.shared_output_input_embeds:
assert len(code_embeddings) == len(self.base_model.list_decoder_embeds)
else:
assert len(code_embeddings) == len(self.base_model.list_output_embeds)
for i in range(len(code_embeddings)):
code_embed = copy.deepcopy(torch.from_numpy(code_embeddings[i]))
assert code_embed.size() == self.base_model.list_output_embeds[i].weight.size()
if self.config.shared_output_input_embeds:
self.base_model.list_decoder_embeds[i].weight.data = code_embed
if i == 0:
print("only decoder embed is assigned centroid embeds.")
else:
self.base_model.list_output_embeds[i].weight.data = code_embed
self.base_model.list_decoder_embeds[i].weight.data = copy.deepcopy(code_embed)
if i == 0:
print("both decoder and output embed are assigned centroid embeds")
def save_pretrained(self, save_dir):
self.base_model.save_pretrained(save_dir)
@classmethod
def from_pretrained(cls, model_name_or_path=None, shared_output_input_embeds=None, multi_vocab_sizes=False):
return cls(model_name_or_path, shared_output_input_embeds, multi_vocab_sizes)
class T5SeqAQEncoderForMarginMSE(T5SeqAQEncoder):
def __init__(self, model_name_or_path, shared_output_input_embeds, multi_vocab_sizes=None):
super().__init__(model_name_or_path, shared_output_input_embeds)
self.loss_fn = torch.nn.MSELoss()
def forward(self, **inputs):
"""
Args:
pos_tokenized_query: [bz, seq_length] + [bz, smtid_length]
neg_tokenized_query: [bz, seq_length] + [bz, smtid_length]
pos_doc_encoding: [bz, smtid_length]
neg_doc_encoding: [bz, smtid_length]
teacher_pos_scores: [bz]
teacher_neg_scores: [bz]
"""
pos_query_embeds = self.base_model(**inputs["pos_tokenized_query"]).decoder_last_hidden_state #[bz, smtid_length, d_model]
neg_query_embeds = self.base_model(**inputs["neg_tokenized_query"]).decoder_last_hidden_state #[bz, smtid_length, d_model]
pos_doc_embeds = self.decode(inputs["pos_doc_encoding"]) #[bz, smtid_length, d_model]
neg_doc_embeds = self.decode(inputs["neg_doc_encoding"]) #[bz, smtid_length, d_Model]
student_margin = (pos_query_embeds * pos_doc_embeds).sum(-1).sum(-1) - (neg_query_embeds * neg_doc_embeds).sum(-1).sum(-1)
teacher_margin = inputs["teacher_pos_scores"] - inputs["teacher_neg_scores"]
loss = self.loss_fn(student_margin, teacher_margin)
return {"rank": loss}
class T5AQEncoder(T5SeqAQEncoder):
""" This is for proof of concept """
def __init__(self, model_name_or_path, shared_output_input_embeds, multi_vocab_sizes=None):
super().__init__(model_name_or_path, shared_output_input_embeds)
def query_encode(self, **inputs):
text_reps = self.base_model(**inputs).decoder_last_hidden_state
last_idx = text_reps.size(1) - 1
assert last_idx == 0
rep = text_reps[:, last_idx, :]
return rep
def decode(self, text_encodings):
return super().decode(text_encodings, summation=True)
class T5SeqAQEncoderForLngKnpMarginMSE(T5SeqAQEncoder):
def __init__(self, model_name_or_path, shared_output_input_embeds, multi_vocab_sizes=None):
super().__init__(model_name_or_path, shared_output_input_embeds)
self.loss_fn = torch.nn.MSELoss()
def forward(self, **inputs):
"""
Args:
pos_tokenized_query: [bz, seq_length] + [bz, smtid_length]
neg_tokenized_query: [bz, seq_length] + [bz, smtid_length]
pos_doc_encoding: [bz, smtid_length]
neg_doc_encoding: [bz, smtid_length]
teacher_pos_scores: [bz]
teacher_neg_scores: [bz]
smtid_8_teacher_pos_scores: [bz]
smtid_8_teacher_neg_scores: [bz]
smtid_16_teacher_pos_scores: [bz]
smtid_16_teacher_neg_scores: [bz]
"""
pos_query_embeds = self.base_model(**inputs["pos_tokenized_query"]).decoder_last_hidden_state #[bz, smtid_length, d_model]
neg_query_embeds = self.base_model(**inputs["neg_tokenized_query"]).decoder_last_hidden_state #[bz, smtid_length, d_model]
pos_doc_embeds = self.decode(inputs["pos_doc_encoding"]) #[bz, smtid_length, d_model]
neg_doc_embeds = self.decode(inputs["neg_doc_encoding"]) #[bz, smtid_length, d_Model]
# rank loss
student_margin = (pos_query_embeds * pos_doc_embeds).sum(-1).sum(-1) - (neg_query_embeds * neg_doc_embeds).sum(-1).sum(-1)
teacher_margin = inputs["teacher_pos_scores"] - inputs["teacher_neg_scores"]
rank_loss = self.loss_fn(student_margin, teacher_margin)
# rank_4 loss
early_pos_score = (pos_query_embeds[:, :4, :].clone() * pos_doc_embeds[:, :4, :].clone()).sum(-1).sum(-1)
early_neg_score = (neg_query_embeds[:, :4, :].clone() * neg_doc_embeds[:, :4, :].clone()).sum(-1).sum(-1)
early_margin = early_pos_score - early_neg_score
early_teacher_margin = inputs["smtid_4_teacher_pos_scores"] - inputs["smtid_4_teacher_neg_scores"]
rank_4_loss = self.loss_fn(early_margin, early_teacher_margin)
if pos_doc_embeds.size()[1] == 8:
return {"rank": rank_loss, "rank_4": rank_4_loss}
elif pos_doc_embeds.size()[1] in [16, 32]:
# rank_8 loss
early_pos_score = (pos_query_embeds[:, :8, :].clone() * pos_doc_embeds[:, :8, :].clone()).sum(-1).sum(-1)
early_neg_score = (neg_query_embeds[:, :8, :].clone() * neg_doc_embeds[:, :8, :].clone()).sum(-1).sum(-1)
early_margin = early_pos_score - early_neg_score
early_teacher_margin = inputs["smtid_8_teacher_pos_scores"] - inputs["smtid_8_teacher_neg_scores"]
rank_8_loss = self.loss_fn(early_margin, early_teacher_margin)
if pos_doc_embeds.size()[1] == 16:
return {"rank": rank_loss, "rank_8": rank_8_loss, "rank_4": rank_4_loss}
elif pos_doc_embeds.size()[1] == 32:
# rank_16 loss
early_pos_score = (pos_query_embeds[:, :16, :].clone() * pos_doc_embeds[:, :16, :].clone()).sum(-1).sum(-1)
early_neg_score = (neg_query_embeds[:, :16, :].clone() * neg_doc_embeds[:, :16, :].clone()).sum(-1).sum(-1)
early_margin = early_pos_score - early_neg_score
early_teacher_margin = inputs["smtid_16_teacher_pos_scores"] - inputs["smtid_16_teacher_neg_scores"]
rank_16_loss = self.loss_fn(early_margin, early_teacher_margin)
return {"rank": rank_loss, "rank_4": rank_4_loss, "rank_8": rank_8_loss, "rank_16": rank_16_loss}
else:
raise ValueError("not valid length: {}".format(pos_doc_embeds.size()[1]))
else:
raise ValueError("not valid length: {}".format(pos_doc_embeds.size()[1]))
class T5SeqAQEncoderForSeq2Seq(T5SeqAQEncoder):
def __init__(self, model_name_or_path, shared_output_input_embeds, multi_vocab_sizes=False):
super().__init__(model_name_or_path, shared_output_input_embeds, multi_vocab_sizes)
self.rank_loss = nn.CrossEntropyLoss()
self.multi_vocab_sizes = multi_vocab_sizes
if self.multi_vocab_sizes:
print("seq2seq model has multi_vocab_sizes")
def get_seq_logits(self, text_embeds):
"""
text_embeds: [bz, smtid_length, d_model]
"""
bz, smtid_length, d_model = text_embeds.size()
seq_logits = []
for i in range(smtid_length):
if self.config.shared_output_input_embeds:
embed_weight = self.base_model.list_decoder_embeds[i].weight
#raise NotImplementedError
else:
embed_weight = self.base_model.list_output_embeds[i].weight
seq_logits.append(
(text_embeds[:, i].clone() @ embed_weight.t()).view(bz, 1, -1)
)
if self.multi_vocab_sizes:
return seq_logits # list of [bz, vocab_size]
else:
seq_logits = torch.cat(seq_logits, dim=1) # [bz, smtid_length, vocab_size]
return seq_logits
def forward(self, **inputs):
"""