Skip to content

Latest commit

 

History

History

language-modeling

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Language model training

Based on the script run_language_modeling.py.

Fine-tuning (or training from scratch) the library models for language modeling on a text dataset for GPT, GPT-2, BERT, DistilBERT and RoBERTa. GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT, DistilBERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss.

Before running the following example, you should get a file that contains text on which the language model will be trained or fine-tuned. A good example of such text is the WikiText-2 dataset.

We will refer to two different files: $TRAIN_FILE, which contains text for training, and $TEST_FILE, which contains text that will be used for evaluation.

GPT-2/GPT and causal language modeling

The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling.

export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw

python run_language_modeling.py \
    --output_dir=output \
    --model_type=gpt2 \
    --model_name_or_path=gpt2 \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --do_eval \
    --eval_data_file=$TEST_FILE

This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches a score of ~20 perplexity once fine-tuned on the dataset.

RoBERTa/BERT/DistilBERT and masked language modeling

The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their pre-training: masked language modeling.

In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge slightly slower (over-fitting takes more epochs).

We use the --mlm flag so that the script may change its loss function.

export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw

python run_language_modeling.py \
    --output_dir=output \
    --model_type=roberta \
    --model_name_or_path=roberta-base \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --do_eval \
    --eval_data_file=$TEST_FILE \
    --mlm