Skip to content

Commit

Permalink
Fix llama model sdpa attention forward function masking bug when outp…
Browse files Browse the repository at this point in the history
…ut_attentions=True (#30652)

* Fix llama model forward function with attention=True, same-length encoded sequence.

* Fix style

* propagate fix to modeling_cohere, gemma, dbrx, and olmo (which copy the same sdpa masking logic from llama)

* Fix style

* ignore unnecessary sdpa mask converter when output_attentions=True

* add tests checking sdpa and eager outputs match when output_attentions=True

* Split if statements in two lines

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix formatting

* Add fix to new jetmoe model

* Add missing output_attentions argument to jetmoe mask creation

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
  • Loading branch information
Aladoro and ArthurZucker authored May 15, 2024
1 parent 2d83324 commit 4b3eb19
Show file tree
Hide file tree
Showing 7 changed files with 212 additions and 163 deletions.
10 changes: 8 additions & 2 deletions src/transformers/models/cohere/modeling_cohere.py
Original file line number Diff line number Diff line change
Expand Up @@ -889,7 +889,9 @@ def forward(
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -958,6 +960,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -974,7 +977,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1020,6 +1025,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
11 changes: 9 additions & 2 deletions src/transformers/models/dbrx/modeling_dbrx.py
Original file line number Diff line number Diff line change
Expand Up @@ -1123,7 +1123,10 @@ def forward(

if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)

causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -1204,6 +1207,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -1220,7 +1224,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1266,6 +1272,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
10 changes: 8 additions & 2 deletions src/transformers/models/gemma/modeling_gemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -873,7 +873,9 @@ def forward(
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -948,6 +950,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -964,7 +967,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1008,6 +1013,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
10 changes: 8 additions & 2 deletions src/transformers/models/jetmoe/modeling_jetmoe.py
Original file line number Diff line number Diff line change
Expand Up @@ -1103,7 +1103,9 @@ def forward(
" this may lead to unexpected behaviour for Flash Attention version of JetMoe. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

hidden_states = inputs_embeds

Expand Down Expand Up @@ -1178,6 +1180,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -1194,7 +1197,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1240,6 +1245,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
10 changes: 8 additions & 2 deletions src/transformers/models/llama/modeling_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -967,7 +967,9 @@ def forward(
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -1036,6 +1038,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -1052,7 +1055,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1098,6 +1103,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
10 changes: 8 additions & 2 deletions src/transformers/models/olmo/modeling_olmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -945,7 +945,9 @@ def forward(
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -1015,6 +1017,7 @@ def _update_causal_mask(
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
Expand All @@ -1031,7 +1034,9 @@ def _update_causal_mask(
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache:

# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
Expand Down Expand Up @@ -1077,6 +1082,7 @@ def _update_causal_mask(
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Expand Down
Loading

0 comments on commit 4b3eb19

Please sign in to comment.