forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling_tf_xlnet.py
1197 lines (970 loc) · 57.7 KB
/
modeling_tf_xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 XLNet model.
"""
import logging
import numpy as np
import tensorflow as tf
from .configuration_xlnet import XLNetConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, get_initializer, shape_list
logger = logging.getLogger(__name__)
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
"xlnet-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-tf_model.h5",
"xlnet-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-tf_model.h5",
}
def gelu(x):
""" Implementation of the gelu activation function.
XLNet is using OpenAI GPT's gelu
Also see https://arxiv.org/abs/1606.08415
"""
cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def swish(x):
return x * tf.sigmoid(x)
ACT2FN = {
"gelu": tf.keras.layers.Activation(gelu),
"relu": tf.keras.activations.relu,
"swish": tf.keras.layers.Activation(swish),
}
class TFXLNetRelativeAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
if config.d_model % config.n_head != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.d_model, config.n_head)
)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model = config.d_model
self.scale = 1 / (config.d_head ** 0.5)
self.initializer_range = config.initializer_range
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def build(self, input_shape):
initializer = get_initializer(self.initializer_range)
self.q = self.add_weight(
shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q"
)
self.k = self.add_weight(
shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k"
)
self.v = self.add_weight(
shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v"
)
self.o = self.add_weight(
shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o"
)
self.r = self.add_weight(
shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r"
)
self.r_r_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
)
self.r_s_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias"
)
self.r_w_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
)
self.seg_embed = self.add_weight(
shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed"
)
super().build(input_shape)
def prune_heads(self, heads):
raise NotImplementedError
def rel_shift(self, x, klen=-1):
"""perform relative shift to form the relative attention score."""
x_size = shape_list(x)
x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3]))
x = x[1:, ...]
x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3]))
x = x[:, 0:klen, :, :]
# x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
return x
def rel_attn_core(self, inputs, training=False):
"""Core relative positional attention operations."""
q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask = inputs
# content based attention score
ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h)
# position based attention score
bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r)
bd = self.rel_shift(bd, klen=shape_list(ac)[1])
# segment based attention score
if seg_mat is None:
ef = 0
else:
ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef)
# merge attention scores and perform masking
attn_score = (ac + bd + ef) * self.scale
if attn_mask is not None:
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
if attn_mask.dtype == tf.float16:
attn_score = attn_score - 65500 * attn_mask
else:
attn_score = attn_score - 1e30 * attn_mask
# attention probability
attn_prob = tf.nn.softmax(attn_score, axis=1)
attn_prob = self.dropout(attn_prob, training=training)
# Mask heads if we want to
if head_mask is not None:
attn_prob = attn_prob * head_mask
# attention output
attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h)
if self.output_attentions:
return attn_vec, attn_prob
return attn_vec
def post_attention(self, inputs, residual=True, training=False):
"""Post-attention processing."""
# post-attention projection (back to `d_model`)
h, attn_vec = inputs
attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o)
attn_out = self.dropout(attn_out, training=training)
if residual:
attn_out = attn_out + h
output = self.layer_norm(attn_out)
return output
def call(self, inputs, training=False):
(h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems, target_mapping, head_mask) = inputs
if g is not None:
# Two-stream attention with relative positional encoding.
# content based attention score
if mems is not None and len(shape_list(mems)) > 1:
cat = tf.concat([mems, h], axis=0)
else:
cat = h
# content-based key head
k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k)
# content-based value head
v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v)
# position-based key head
k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r)
# h-stream
# content-stream query head
q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q)
# core attention ops
attn_vec_h = self.rel_attn_core(
[q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask], training=training
)
if self.output_attentions:
attn_vec_h, attn_prob_h = attn_vec_h
# post processing
output_h = self.post_attention([h, attn_vec_h], training=training)
# g-stream
# query-stream query head
q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q)
# core attention ops
if target_mapping is not None:
q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
attn_vec_g = self.rel_attn_core(
[q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask], training=training
)
if self.output_attentions:
attn_vec_g, attn_prob_g = attn_vec_g
attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
else:
attn_vec_g = self.rel_attn_core(
[q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask], training=training
)
if self.output_attentions:
attn_vec_g, attn_prob_g = attn_vec_g
# post processing
output_g = self.post_attention([g, attn_vec_g], training=training)
if self.output_attentions:
attn_prob = attn_prob_h, attn_prob_g
else:
# Multi-head attention with relative positional encoding
if mems is not None and len(shape_list(mems)) > 1:
cat = tf.concat([mems, h], axis=0)
else:
cat = h
# content heads
q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q)
k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k)
v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v)
# positional heads
k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r)
# core attention ops
attn_vec = self.rel_attn_core(
[q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask], training=training
)
if self.output_attentions:
attn_vec, attn_prob = attn_vec
# post processing
output_h = self.post_attention([h, attn_vec], training=training)
output_g = None
outputs = (output_h, output_g)
if self.output_attentions:
outputs = outputs + (attn_prob,)
return outputs
class TFXLNetFeedForward(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.layer_1 = tf.keras.layers.Dense(
config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1"
)
self.layer_2 = tf.keras.layers.Dense(
config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2"
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
if isinstance(config.ff_activation, str):
self.activation_function = ACT2FN[config.ff_activation]
else:
self.activation_function = config.ff_activation
def call(self, inp, training=False):
output = inp
output = self.layer_1(output)
output = self.activation_function(output)
output = self.dropout(output, training=training)
output = self.layer_2(output)
output = self.dropout(output, training=training)
output = self.layer_norm(output + inp)
return output
class TFXLNetLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn")
self.ff = TFXLNetFeedForward(config, name="ff")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def call(self, inputs, training=False):
outputs = self.rel_attn(inputs, training=training)
output_h, output_g = outputs[:2]
if output_g is not None:
output_g = self.ff(output_g, training=training)
output_h = self.ff(output_h, training=training)
outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
return outputs
class TFXLNetLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
class TFXLNetMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.output_past = config.output_past
self.mem_len = config.mem_len
self.reuse_len = config.reuse_len
self.d_model = config.d_model
self.same_length = config.same_length
self.attn_type = config.attn_type
self.bi_data = config.bi_data
self.clamp_len = config.clamp_len
self.n_layer = config.n_layer
self.use_bfloat16 = config.use_bfloat16
self.initializer_range = config.initializer_range
self.word_embedding = TFSharedEmbeddings(
config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding"
)
self.layer = [TFXLNetLayer(config, name="layer_._{}".format(i)) for i in range(config.n_layer)]
self.dropout = tf.keras.layers.Dropout(config.dropout)
def get_input_embeddings(self):
return self.word_embedding
def build(self, input_shape):
initializer = get_initializer(self.initializer_range)
self.mask_emb = self.add_weight(
shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb"
)
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def create_mask(self, qlen, mlen, dtype=tf.float32):
"""
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
Args:
qlen: TODO Lysandre didn't fill
mlen: TODO Lysandre didn't fill
::
same_length=False: same_length=True:
<mlen > < qlen > <mlen > < qlen >
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
"""
attn_mask = tf.ones([qlen, qlen], dtype=dtype)
mask_u = tf.matrix_band_part(attn_mask, 0, -1)
mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
if self.same_length:
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
return ret
def cache_mem(self, curr_out, prev_mem):
"""cache hidden states into memory."""
if self.reuse_len is not None and self.reuse_len > 0:
curr_out = curr_out[: self.reuse_len]
if prev_mem is None:
new_mem = curr_out[-self.mem_len :]
else:
new_mem = tf.concat([prev_mem, curr_out], 0)[-self.mem_len :]
return tf.stop_gradient(new_mem)
@staticmethod
def positional_embedding(pos_seq, inv_freq, bsz=None):
sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1)
pos_emb = pos_emb[:, None, :]
if bsz is not None:
pos_emb = tf.tile(pos_emb, [1, bsz, 1])
return pos_emb
def relative_positional_encoding(self, qlen, klen, bsz=None, dtype=None):
"""create relative positional encoding."""
freq_seq = tf.range(0, self.d_model, 2.0)
if dtype is not None and dtype != tf.float32:
freq_seq = tf.cast(freq_seq, dtype=dtype)
inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
if self.attn_type == "bi":
# beg, end = klen - 1, -qlen
beg, end = klen, -qlen
elif self.attn_type == "uni":
# beg, end = klen - 1, -1
beg, end = klen, -1
else:
raise ValueError("Unknown `attn_type` {}.".format(self.attn_type))
if self.bi_data:
fwd_pos_seq = tf.range(beg, end, -1.0)
bwd_pos_seq = tf.range(-beg, -end, 1.0)
if dtype is not None and dtype != tf.float32:
fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype)
if self.clamp_len > 0:
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len)
bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len)
if bsz is not None:
# With bi_data, the batch size should be divisible by 2.
assert bsz % 2 == 0
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
else:
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
else:
fwd_pos_seq = tf.range(beg, end, -1.0)
if dtype is not None and dtype != tf.float32:
fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
if self.clamp_len > 0:
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len)
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
return pos_emb
def call(
self,
inputs,
attention_mask=None,
mems=None,
perm_mask=None,
target_mapping=None,
token_type_ids=None,
input_mask=None,
head_mask=None,
inputs_embeds=None,
training=False,
):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
mems = inputs[2] if len(inputs) > 2 else mems
perm_mask = inputs[3] if len(inputs) > 3 else perm_mask
target_mapping = inputs[4] if len(inputs) > 4 else target_mapping
token_type_ids = inputs[5] if len(inputs) > 5 else token_type_ids
input_mask = inputs[6] if len(inputs) > 6 else input_mask
head_mask = inputs[7] if len(inputs) > 7 else head_mask
inputs_embeds = inputs[8] if len(inputs) > 8 else inputs_embeds
assert len(inputs) <= 9, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
mems = inputs.get("mems", mems)
perm_mask = inputs.get("perm_mask", perm_mask)
target_mapping = inputs.get("target_mapping", target_mapping)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
input_mask = inputs.get("input_mask", input_mask)
head_mask = inputs.get("head_mask", head_mask)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
assert len(inputs) <= 9, "Too many inputs."
else:
input_ids = inputs
# the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
# but we want a unified interface in the library with the batch size on the first dimension
# so we move here the first dimension (batch) to the end
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = tf.transpose(input_ids, perm=(1, 0))
qlen, bsz = shape_list(input_ids)[:2]
elif inputs_embeds is not None:
inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
qlen, bsz = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None
input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None
attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None
perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None
target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None
mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0
klen = mlen + qlen
dtype_float = tf.bfloat16 if self.use_bfloat16 else tf.float32
# Attention mask
# causal attention mask
if self.attn_type == "uni":
attn_mask = self.create_mask(qlen, mlen)
attn_mask = attn_mask[:, :, None, None]
elif self.attn_type == "bi":
attn_mask = None
else:
raise ValueError("Unsupported attention type: {}".format(self.attn_type))
# data mask: input mask & perm mask
assert input_mask is None or attention_mask is None, (
"You can only use one of input_mask (uses 1 for padding) "
"or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
)
if input_mask is None and attention_mask is not None:
input_mask = 1.0 - tf.cast(attention_mask, dtype=dtype_float)
if input_mask is not None and perm_mask is not None:
data_mask = input_mask[None] + perm_mask
elif input_mask is not None and perm_mask is None:
data_mask = input_mask[None]
elif input_mask is None and perm_mask is not None:
data_mask = perm_mask
else:
data_mask = None
if data_mask is not None:
# all mems can be attended to
mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz], dtype=dtype_float)
data_mask = tf.concat([mems_mask, data_mask], axis=1)
if attn_mask is None:
attn_mask = data_mask[:, :, :, None]
else:
attn_mask += data_mask[:, :, :, None]
if attn_mask is not None:
attn_mask = tf.cast(attn_mask > 0, dtype=dtype_float)
if attn_mask is not None:
non_tgt_mask = -tf.eye(qlen, dtype=dtype_float)
non_tgt_mask = tf.concat([tf.zeros([qlen, mlen], dtype=dtype_float), non_tgt_mask], axis=-1)
non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=dtype_float)
else:
non_tgt_mask = None
# Word embeddings and prepare h & g hidden states
if inputs_embeds is not None:
word_emb_k = inputs_embeds
else:
word_emb_k = self.word_embedding(input_ids)
output_h = self.dropout(word_emb_k, training=training)
if target_mapping is not None:
word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1])
# else: # We removed the inp_q input which was same as target mapping
# inp_q_ext = inp_q[:, :, None]
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
output_g = self.dropout(word_emb_q, training=training)
else:
output_g = None
# Segment embedding
if token_type_ids is not None:
# Convert `token_type_ids` to one-hot `seg_mat`
mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32)
cat_ids = tf.concat([mem_pad, token_type_ids], 0)
# `1` indicates not in the same segment [qlen x klen x bsz]
seg_mat = tf.cast(tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), tf.int32)
seg_mat = tf.one_hot(seg_mat, 2, dtype=dtype_float)
else:
seg_mat = None
# Positional encoding
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz, dtype=dtype_float)
pos_emb = self.dropout(pos_emb, training=training)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.n_layer
new_mems = ()
if mems is None:
mems = [None] * len(self.layer)
attentions = []
hidden_states = []
for i, layer_module in enumerate(self.layer):
# cache new mems
if self.mem_len is not None and self.mem_len > 0 and self.output_past:
new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
if self.output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
outputs = layer_module(
[output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems[i], target_mapping, head_mask[i]],
training=training,
)
output_h, output_g = outputs[:2]
if self.output_attentions:
attentions.append(outputs[2])
# Add last hidden state
if self.output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
output = self.dropout(output_g if output_g is not None else output_h, training=training)
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
outputs = (tf.transpose(output, perm=(1, 0, 2)),)
if self.mem_len is not None and self.mem_len > 0 and self.output_past:
outputs = outputs + (new_mems,)
if self.output_hidden_states:
if output_g is not None:
hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs)
else:
hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states)
outputs = outputs + (hidden_states,)
if self.output_attentions:
attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)
outputs = outputs + (attentions,)
return outputs # outputs, (new_mems), (hidden_states), (attentions)
class TFXLNetPreTrainedModel(TFPreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = XLNetConfig
pretrained_model_archive_map = TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "transformer"
XLNET_START_DOCSTRING = r"""
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors
in the first positional argument :
- a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
Parameters:
config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
XLNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`transformers.XLNetTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.encode_plus` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
`What are attention masks? <../glossary.html#attention-mask>`__
mems (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
given to this model should not be passed as input ids as they have already been computed.
perm_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to indicate the attention pattern for each input token with values selected in ``[0, 1]``:
If ``perm_mask[k, i, j] = 0``, i attend to j in batch k;
if ``perm_mask[k, i, j] = 1``, i does not attend to j in batch k.
If None, each token attends to all the others (full bidirectional attention).
Only used during pretraining (to define factorization order) or for sequential decoding (generation).
target_mapping (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, num_predict, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to indicate the output tokens to use.
If ``target_mapping[k, i, j] = 1``, the i-th predict in batch k is on the j-th token.
Only used during pretraining for partial prediction or for sequential decoding (generation).
token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
`What are token type IDs? <../glossary.html#token-type-ids>`_
input_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding.
Kept for compatibility with the original code base.
You can only uses one of `input_mask` and `attention_mask`
Mask values selected in ``[0, 1]``:
``1`` for tokens that are MASKED, ``0`` for tokens that are NOT MASKED.
head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
input_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings(
"The bare XLNet Model transformer outputing raw hidden-states without any specific head on top.",
XLNET_START_DOCSTRING,
)
class TFXLNetModel(TFXLNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLNetMainLayer(config, name="transformer")
@add_start_docstrings_to_callable(XLNET_INPUTS_DOCSTRING)
def call(self, inputs, **kwargs):
r"""
Return:
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
last_hidden_state (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the last layer of the model.
mems (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
import tensorflow as tf
from transformers import XLNetTokenizer, TFXLNetModel
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetModel.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
outputs = self.transformer(inputs, **kwargs)
return outputs
@add_start_docstrings(
"""XLNet Model with a language modeling head on top
(linear layer with weights tied to the input embeddings). """,
XLNET_START_DOCSTRING,
)
class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLNetMainLayer(config, name="transformer")
self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss")
def get_output_embeddings(self):
return self.lm_loss.input_embeddings
@add_start_docstrings_to_callable(XLNET_INPUTS_DOCSTRING)
def call(self, inputs, **kwargs):
r"""
Return:
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
prediction_scores (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mems (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
import tensorflow as tf
import numpy as np
from transformers import XLNetTokenizer, TFXLNetLMHeadModel
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetLMHeadModel.from_pretrained('xlnet-large-cased')
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[None, :] # We will predict the masked token
perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1]))
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = np.zeros((1, 1, input_ids.shape[1])) # Shape [1, 1, seq_length] => let's predict one token
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
outputs = model(input_ids, perm_mask=tf.constant(perm_mask, dtype=tf.float32), target_mapping=tf.constant(target_mapping, dtype=tf.float32))
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
"""
transformer_outputs = self.transformer(inputs, **kwargs)
hidden_state = transformer_outputs[0]
logits = self.lm_loss(hidden_state)
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
return outputs # return logits, (mems), (hidden states), (attentions)
@add_start_docstrings(
"""XLNet Model with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
XLNET_START_DOCSTRING,
)
class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(
config, initializer_range=config.initializer_range, name="sequence_summary"
)
self.logits_proj = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
)
@add_start_docstrings_to_callable(XLNET_INPUTS_DOCSTRING)
def call(self, inputs, **kwargs):
r"""
Return:
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
logits (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
mems (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
import tensorflow as tf
from transformers import XLNetTokenizer, TFXLNetForSequenceClassification
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
logits = outputs[0]
"""
transformer_outputs = self.transformer(inputs, **kwargs)
output = transformer_outputs[0]
output = self.sequence_summary(output)
logits = self.logits_proj(output)
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
return outputs # return logits, (mems), (hidden states), (attentions)
@add_start_docstrings(
"""XLNet Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
XLNET_START_DOCSTRING,
)
class TFXLNetForTokenClassification(TFXLNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name="transformer")
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
def call(self, inputs, **kwargs):
r"""
Return:
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.XLNetConfig`) and inputs:
logits (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:(batch_size, config.num_labels)`):
Classification scores (before SoftMax).
mems (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` or :obj:`Numpy array` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
import tensorflow as tf
from transformers import XLNetTokenizer, TFXLNetForTokenClassification
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetForTokenClassification.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1