forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
configuration_xlnet.py
213 lines (186 loc) · 9.98 KB
/
configuration_xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLNet configuration """
import logging
from .configuration_utils import PretrainedConfig
logger = logging.getLogger(__name__)
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlnet-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json",
"xlnet-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}
class XLNetConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.XLNetModel`.
It is used to instantiate an XLNet model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the `xlnet-large-cased <https://huggingface.co/xlnet-large-cased>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
for more information.
Args:
vocab_size (:obj:`int`, optional, defaults to 32000):
Vocabulary size of the XLNet model. Defines the different tokens that
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XLNetModel`.
d_model (:obj:`int`, optional, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
n_layer (:obj:`int`, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
d_inner (:obj:`int`, optional, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
ff_activation (:obj:`string`, optional, defaults to "gelu"):
The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
untie_r (:obj:`boolean`, optional, defaults to :obj:`True`):
Untie relative position biases
attn_type (:obj:`string`, optional, defaults to "bi"):
The attention type used by the model. Set 'bi' for XLNet, 'uni' for Transformer-XL.
initializer_range (:obj:`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
dropout (:obj:`float`, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
mem_len (:obj:`int` or :obj:`None`, optional, defaults to :obj:`None`):
The number of tokens to cache. The key/value pairs that have already been pre-computed
in a previous forward pass won't be re-computed. See the
`quickstart <https://huggingface.co/transformers/quickstart.html#using-the-past>`__
for more information.
reuse_len (:obj:`int` or :obj:`None`, optional, defaults to :obj:`None`):
The number of tokens in the current batch to be cached and reused in the future.
bi_data (:obj:`boolean`, optional, defaults to :obj:`False`):
Whether to use bidirectional input pipeline. Usually set to `True` during
pretraining and `False` during finetuning.
clamp_len (:obj:`int`, optional, defaults to -1):
Clamp all relative distances larger than clamp_len.
Setting this attribute to -1 means no clamping.
same_length (:obj:`boolean`, optional, defaults to :obj:`False`):
Whether to use the same attention length for each token.
summary_type (:obj:`string`, optional, defaults to "last"):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:transformers.XLNetForSequenceClassification` and :class:`~transformers.XLNetForMultipleChoice`.
Is one of the following options:
- 'last' => take the last token hidden state (like XLNet)
- 'first' => take the first token hidden state (like Bert)
- 'mean' => take the mean of all tokens hidden states
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
- 'attn' => Not implemented now, use multi-head attention
summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLNetForSequenceClassification` and :class:`~transformers.XLNetForMultipleChoice`.
Add a projection after the vector extraction
summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLNetForSequenceClassification` and :class:`~transformers.XLNetForMultipleChoice`.
'tanh' => add a tanh activation to the output, Other => no activation.
summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLNetForSequenceClassification` and :class:`~transformers.XLNetForMultipleChoice`.
If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
summary_last_dropout (:obj:`float`, optional, defaults to 0.1):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLNetForSequenceClassification` and :class:`~transformers.XLNetForMultipleChoice`.
Add a dropout after the projection and activation
start_n_top (:obj:`int`, optional, defaults to 5):
Used in the SQuAD evaluation script for XLM and XLNet.
end_n_top (:obj:`int`, optional, defaults to 5):
Used in the SQuAD evaluation script for XLM and XLNet.
Example::
from transformers import XLNetConfig, XLNetModel
# Initializing a XLNet configuration
configuration = XLNetConfig()
# Initializing a model from the configuration
model = XLNetModel(configuration)
# Accessing the model configuration
configuration = model.config
Attributes:
pretrained_config_archive_map (Dict[str, str]):
A dictionary containing all the available pre-trained checkpoints.
"""
pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "xlnet"
def __init__(
self,
vocab_size=32000,
d_model=1024,
n_layer=24,
n_head=16,
d_inner=4096,
ff_activation="gelu",
untie_r=True,
attn_type="bi",
initializer_range=0.02,
layer_norm_eps=1e-12,
dropout=0.1,
mem_len=None,
reuse_len=None,
bi_data=False,
clamp_len=-1,
same_length=False,
summary_type="last",
summary_use_proj=True,
summary_activation="tanh",
summary_last_dropout=0.1,
start_n_top=5,
end_n_top=5,
**kwargs
):
"""Constructs XLNetConfig.
"""
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_model = d_model
self.n_layer = n_layer
self.n_head = n_head
assert d_model % n_head == 0
self.d_head = d_model // n_head
self.ff_activation = ff_activation
self.d_inner = d_inner
self.untie_r = untie_r
self.attn_type = attn_type
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.dropout = dropout
self.mem_len = mem_len
self.reuse_len = reuse_len
self.bi_data = bi_data
self.clamp_len = clamp_len
self.same_length = same_length
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_last_dropout = summary_last_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
@property
def max_position_embeddings(self):
return -1
@property
def n_token(self): # Backward compatibility
return self.vocab_size
@n_token.setter
def n_token(self, value): # Backward compatibility
self.vocab_size = value
@property
def hidden_size(self):
return self.d_model
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return self.n_layer