-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalphabet_generate_mix3.py
175 lines (137 loc) · 4.84 KB
/
alphabet_generate_mix3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import random as rd
import sys
from skimage.measure import regionprops, label
from lib import *
from util import *
out_model_dir = checked("./alphabet_model")
vertex_image_dir = checked("./alphabet_vertex")
gen_image_dir = checked("./alphabet_gen")
logger = getFileLogger("alphabet_vertex")
logger.info("Start!")
using_gpu = False
xp = np
try:
cuda.check_cuda_available()
xp = cuda.cupy
cuda.get_device(0).use()
using_gpu = True
except:
print "I'm sorry. Using CPU."
nz = 100
# load model =======================================================================
gen = Generator(nz=nz)
o_gen = optimizers.Adam(alpha=0.0002, beta1=0.5)
o_gen.setup(gen)
o_gen.add_hook(chainer.optimizer.WeightDecay(0.00001))
if using_gpu:
gen.to_gpu()
serializers.load_hdf5("%s/dcgan_model_gen.h5" % out_model_dir, gen)
serializers.load_hdf5("%s/dcgan_state_gen.h5" % out_model_dir, o_gen)
# load gen params ================================================================
gen_params = {}
# letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# letters = "abcdefghijklmnopqrstuvwxyz"
for letter in letters:
z = xp.load("%s/%s.npy" % (vertex_image_dir, letter))
gen_params[letter] = z
# Funcs =============================================================================
class Clip(chainer.Function):
def forward(self, x):
x = x[0]
ret = cuda.elementwise(
'T x', 'T ret',
'''
ret = x<-1?-1:(x>1?1:x);
''', 'clip')(x)
return ret
def clip(x):
return np.float32(-1 if x < -1 else (1 if x > 1 else x))
# gen =========================================================
print "Let's generate!"
# target_titles = [
# "A", "B", "A+B", "A+B+C"
# ]
target_titles = []
for i in range(64):
# ランダムに3つのアルファベットを選んで
choices = rd.sample(letters, 3)
target_titles.append("+".join(choices))
def conv_to_params(title):
if title.count("+"):
titles = title.split("+")
# gen_params[t]は、cupyのndarrayになっているっぽい
# np.mean, cupy.meanの方法がうまくいかないので、愚直に平均を出す
res = xp.zeros(100, dtype=np.float32)
for t in titles:
res = res + gen_params[t]
print res / len(titles)
return res / len(titles)
# return (gen_params[titles[0]] + gen_params[titles[1]]) / 2
else:
return gen_params[title]
targets = map(conv_to_params, target_titles)
gen_param = xp.array(targets, dtype=np.float32)
z = Variable(gen_param)
x = gen(z, test=True)
x = x.data.get() # 生成画像リスト
pylab.rcParams['figure.figsize'] = (16.0, 16.0)
pylab.clf()
y = xp.array(x)
print y.shape
def binarize(ndArr, th=0):
(rowCnt, colCnt) = ndArr.shape
for i in range(rowCnt):
for j in range(colCnt):
ndArr[i][j] = -1 if ndArr[i][j] > th else 1 # 白(背景)を-1に、黒を1にしている
return ndArr
# 白黒反転
def invert(binaryArr):
f = np.vectorize(lambda x : 1 - x) # 全要素に作用する関数を作成(xは各要素の値)
return f(binaryArr)
# 白黒反転すべきか
def should_invert(ndArr):
assert ndArr.shape == (48,48)
arr = []
for i,v in np.ndenumerate(ndArr):
if i[0] in [0,47] or i[1] in [0,47]:
arr.append(v)
arr = np.array(arr)
# 外周要素の半数以上が1なら反転の必要がある
return np.count_nonzero(arr) > arr.size / 2
def analyze(tgt, idx):
print "%d :==========================" % idx
tgt = binarize(tgt)
if should_invert(tgt):
tgt = invert(tgt)
regions = regionprops(label(tgt))
for region in regions:
print "-----"
print "area:%s" % region.area # 面積(含まれる画素数)
print "centroid:" + str(region.centroid) # 中心座標
print "perimeter:%s" % region.perimeter # 周長
print "euler:%s" % region.euler_number
print "circularity:%s" % (region.area / region.perimeter**2)
print "complexity:%s" % (region.perimeter**2 / region.area)
for i_ in range(len(targets)):
_tmp = cuda.to_cpu(y[i_, 0, :, :])
# if using_gpu:
# tmp = Clip().forward(y[i_, 0, :, :]).get()
# else:
# tmp = np.vectorize(clip)(y[i_, 0, :, :])
tmp = np.vectorize(clip)(_tmp)
analyze(tmp, i_)
pylab.subplot(8, 8, i_ + 1)
pylab.title(target_titles[i_])
# バグっぽい動き
# if (i_ + 1) % 3 == 0:
# pylab.imshow(tmp, cmap="hot")
# else:
# pylab.imshow(tmp, cmap="gray")
color = "hot" if (i_ + 1) % 4 == 0 else "gray"
pylab.imshow(tmp, cmap=color)
pylab.axis('off')
pylab.savefig('%s/mix3.png' % (gen_image_dir))
# ===============================================================