-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
159 lines (126 loc) · 5.49 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''
# -*- coding: utf-8 -*-
# @Project : code
# @File : dataset.py
# @Software : PyCharm
# @Author : hetolin
# @Email : hetolin@163.com
# @Date : 2021/11/4 21:45
# @Desciption:
'''
import os
import numpy as np
import torch as tc
from math import sin, cos
import json
from copy import deepcopy
from torch.utils.data import Dataset, DataLoader
from lib.utils_pose import save_to_obj_pts, load_obj
from config.config_sarnet import args
def pc_normalize(pcd):
""" pc: NxC, return NxC """
pc = deepcopy(pcd)
centroid = np.mean(pc, axis=0)
pc = pc - centroid
scale = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
pc = pc / scale
return pc, centroid, scale
class NOCS_DataSet(Dataset):
def __init__(self, args):
self.json_file_path = args.json_file_path
self.dataset = args.dataset
self.nFPS = args.nFPS
with open(self.json_file_path, "r") as stream:
self.data = json.load(stream)
self.length = len(self.data)
self.categories = args.categories
self.temp_folder = args.temp_folder
def __len__(self):
return self.length
# return 1200
def __getitem__(self, idx):
obsv_pcd_path = self.data[idx][0]
target_SA_path = self.data[idx][1] # Shape Alignment
target_SC_path = self.data[idx][2] # Symmetry Correspondence
target_sOC_path = self.data[idx][3] # scale_factor(not used yet), Object Center
target_OS_path = self.data[idx][4] # Object Size
rot_path = self.data[idx][5]
cate_id = self.data[idx][6]
self.category = self.categories[cate_id]
temp_pcd_path = os.path.join(self.temp_folder, f'{self.category}_fps_{self.nFPS}_normalized.obj')
# temp_pcd_path = os.path.join('../data', self.dataset, 'template_FPS/{}_fps_{}_normalized.obj'.format(self.category, self.nFPS))
temp_pcd, _ = load_obj(temp_pcd_path)
obsv_pcd, _ = load_obj(obsv_pcd_path)
target_SC, _ = load_obj(target_SC_path)
target_OC = np.loadtxt(target_sOC_path)[:-1].reshape(3, 1) # (3,1)
target_OS = np.loadtxt(target_OS_path).reshape(3, 1) # (3,1)
rot = np.loadtxt(rot_path)
cate_id = np.array(cate_id)
target_SA = np.dot(temp_pcd, rot.T)
# add in-plane rotation
# np.random.seed(idx)
# in_plane = np.random.uniform(-60,60,1)
# in_plane = np.radians(in_plane)
# rotz = np.array([[cos(in_plane), -sin(in_plane), 0], [sin(in_plane), cos(in_plane), 0], [0, 0, 1]])
# obsv_pcd = np.dot(obsv_pcd, rotz.T) #(N,3)
# target_SA = np.dot(target_SA, rotz.T) #(N,3)
# target_SC = np.dot(target_SC, rotz.T) #(N,3)
# rot = np.dot(rotz, rot)
# targe_OC = np.dot(rotz, target_OC) #(N,3)
# to tensor
data = (obsv_pcd, temp_pcd, target_SA, target_SC, target_OC, target_OS, rot, cate_id)
obsv_pcd, temp_pcd, target_SA, target_SC, target_OC, target_OS, rot, cate_id = [tc.from_numpy(d) for d in data]
# sample
np.random.seed(idx)
sample = np.random.choice(obsv_pcd.shape[0], size=1024, replace=False)
obsv_pcd = obsv_pcd[sample]
target_SC = target_SC[sample]
# adjust shape and type
# (3, N)
obsv_pcd = obsv_pcd.float().transpose(1, 0).contiguous()
temp_pcd = temp_pcd.float().transpose(1, 0).contiguous()
target_SA = target_SA.float().transpose(1, 0).contiguous()
target_SC = target_SC.float().transpose(1, 0).contiguous()
target_OC = target_OC.float()
target_OS = target_OS.float()
rot = rot.float()
if self.category in ['bowl', 'can', 'bottle']:
theta = 2 * np.pi / 12
rot_y_matrix = np.array([[cos(theta), 0, sin(theta)],
[0, 1, 0],
[-sin(theta), 0, cos(theta)]
])
rot_y_matrix = tc.from_numpy(rot_y_matrix).float()
# target_SA (3, 36)
# rot (3, 3)
_SA_obj = tc.matmul(rot.transpose(1, 0).contiguous(), target_SA)
# in object coordinate
GT_NUM = 12
SA_obj_list = []
SA_obj_list.append(_SA_obj)
for i in range(1, GT_NUM):
_SA_obj = tc.matmul(rot_y_matrix, SA_obj_list[i-1])
SA_obj_list.append(_SA_obj)
# in camera coordinate
SA_cam_list = []
SA_cam_list.append(target_SA)
for i in range(1, GT_NUM):
_SA_cam = tc.matmul(rot, SA_obj_list[i])
SA_cam_list.append(_SA_cam)
target_SA = tc.stack(SA_cam_list, dim=0)
else:
target_SA = target_SA.unsqueeze(0).repeat((12,1,1))
return obsv_pcd, temp_pcd, target_SA, target_SC, target_OC, target_OS, cate_id
def test_dataset():
nocs = NOCS_DataSet(args)
dataloader = DataLoader(nocs, batch_size= 4, shuffle= True)
categories = ['bottle', 'bowl', 'camera', 'can', 'laptop', 'mug']
for i, (obsv_pcd, temp_pcd, target_SA, target_SC, target_OC, target_OS, cate_id) in enumerate(dataloader):
print(target_SA.shape)
save_to_obj_pts(obsv_pcd[0].numpy().transpose(), './debug/{}_obsv.obj'.format(cate_id[0]))
save_to_obj_pts(target_SA[0][0].numpy().transpose(), './debug/{}_SA.obj'.format(cate_id[0]))
save_to_obj_pts(target_SC[0].numpy().transpose(), './debug/{}_SC.obj'.format(cate_id[0]))
if i == 1:
break
if __name__ == '__main__':
test_dataset()