Skip to content

hasteck/MRF_NeurIPS_2019

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Markov Random Fields for Collaborative Filtering

This notebook provides an implementation in Python 2.7 of the algorithm outlined in the paper "Markov Random Fields for Collaborative Filtering" at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

For reproducibility, the experiments utilize publicly available code for pre-processing three popular data-sets and for evaluating the learned model. That code accompanies the paper "Variational Autoencoders for Collaborative Filtering" by Dawen Liang et al. at The Web Conference 2018. While the code for the Movielens-20M data-set was made publicly available, the code for pre-processing the other two data-sets can easily be obtained by modifying their code as described in their paper.

The experiments in the paper (where an AWS instance with 64 GB RAM and 16 vCPUs was used) may be re-run by following these three steps:

  • Step 1: Pre-processing the data (utilizing the publicly available code)
  • Step 2: Learning the MRF (this code implements the new algorithm)
  • Step 3: Evaluation (utilizing the publicly available code)

About

Markov Random Fields for Collaborartive Filtering

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published