-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmain.py
310 lines (266 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import time
import datetime
import torch
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp
import numpy as np
from tqdm import tqdm
from tensorboardX import SummaryWriter
# from torch.utils.tensorboard import SummaryWriter
from model import TCANet
from utils import RawDataset, load_data, load_dataloader, \
save_model, load_model, save_visual_info, record, draw_attn
from config import Config, config
from IPython import embed
import logging
logging.basicConfig( \
level = logging.INFO, \
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
def train(args):
logging.info("start load parameters.")
torch.manual_seed(args.seed)
if args.dataset_name != 'mnist':
num_chans = [args.nhid] * (args.levels - 1) + [args.emsize]
else:
num_chans = [args.nhid] * args.levels
logger = SummaryWriter(args.dir_log)
# load data
logging.info("start load {} dataset.".format(args.dataset_name))
train_dataset = RawDataset(args.dir_data_root, args.dataset_name, 'train', args.seq_len, args.valid_len, args.is_corpus, args.permute)
valid_dataset = RawDataset(args.dir_data_root, args.dataset_name, 'valid', args.seq_len, args.valid_len, args.is_corpus, args.permute)
test_dataset = RawDataset(args.dir_data_root, args.dataset_name, 'test', args.seq_len, args.valid_len, args.is_corpus, args.permute)
train_dataloader = load_dataloader(train_dataset, args.batch_size, num_workers=args.num_workers)
valid_dataloader = load_dataloader(valid_dataset, args.batch_size, num_workers=args.num_workers)
test_dataloader = load_dataloader(test_dataset, args.batch_size, num_workers=args.num_workers)
n_dict = train_dataset.n_dict
logging.info("end -------------")
# define model
logging.info("start load model.")
model = TCANet(args.emsize, n_dict, num_chans, args.valid_len, args.num_subblocks, temp_attn=args.temp_attn, nheads=args.nheads,
en_res=args.en_res, conv=args.conv, dropout=args.dropout, emb_dropout=args.emb_dropout, key_size=args.key_size,
kernel_size=args.ksize, tied_weights=args.tied, dataset_name=args.dataset_name, visual=args.visual)
num_parameters_train = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info("Number of parameters = {}".format(num_parameters_train))
if args.cuda:
model.cuda(args.gpu_id)
if args.is_parallel:
model = nn.DataParallel(model)
logging.info("The model is training with nn.DataParallel.")
if args.continue_train:
model = load_model(model, args)
logging.info("Continue training, load saved model.")
criterion = nn.CrossEntropyLoss()
lr = args.lr
optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)
visual_info_all = []
best_vloss = 1e8
# start training
logging.info("start training.")
try:
all_vloss = []
for epoch in range(args.epochs):
epoch_start_time = time.time()
model.train()
loss_sum = 0
processed_data_size = 0
correct_total = 0
for i, (train_batch, label_batch) in enumerate(tqdm(train_dataloader, ncols=80)):
optimizer.zero_grad()
train_batch = train_batch.cuda(args.gpu_id)
label_batch = label_batch.cuda(args.gpu_id)
if args.temp_attn:
output_batch, attn_weight_list = model(train_batch)
if i == 1:
visual_info = [train_batch, label_batch, attn_weight_list]
else:
output_batch = model(train_batch)
# Discard the effective history part
eff_history = args.seq_len - args.valid_len
if eff_history < 0:
raise ValueError("Valid sequence length must be smaller than sequence length!")
if args.dataset_name != 'mnist':
label_batch = label_batch[:, eff_history:].contiguous().view(-1)
output_batch = output_batch[:, eff_history:].contiguous().view(-1, n_dict)
else:
pred = output_batch.data.max(1, keepdim=True)[1]
correct_total += pred.eq(label_batch.data.view_as(pred)).cpu().sum()
loss_i = criterion(output_batch, label_batch)
loss_i.backward()
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if args.dataset_name != 'mnist':
loss_sum += (train_batch.size(1) - eff_history) * loss_i.item()
processed_data_size += train_batch.size(1) - eff_history
else:
loss_sum += loss_i.item()
processed_data_size += 1
if args.dataset_name == 'mnist':
acc_train = 100*float(correct_total)/len(train_dataset)
loss_train = round(loss_sum/processed_data_size, 6)
ppl_train = round(np.exp(loss_train), 4)
epoch_end_time = time.time()
# evaluate
loss_val, ppl_val = evaluate(model, valid_dataloader, criterion, n_dict, args)
loss_test, ppl_test = evaluate(model, test_dataloader, criterion, n_dict, args)
# draw sequence correlation map
if args.temp_attn and args.visual:
visual_info_all.append(visual_info)
if epoch == 0:
draw_attn(visual_info, epoch, args, train_dataset.dictionary)
else:
draw_attn(visual_info, epoch, args)
# tensorboard
if args.dataset_name == 'mnist':
logging.info('| Epoch {}/{} | Time: {:.2f}s | train loss {:.2f} | train acc {:.2f} | test loss {:.2f} | test acc {:.2f} |'\
.format(epoch+1, args.epochs, epoch_end_time-epoch_start_time, loss_train, acc_train, loss_test, ppl_test))
logger_note = args.log
logger.add_scalars('{}/train_loss'.format(logger_note), {'loss_train': loss_train}, epoch)
logger.add_scalars('{}/train_acc'.format(logger_note), {'acc_train':acc_train}, epoch)
logger.add_scalars('{}/test_loss'.format(logger_note), {'loss_test': loss_test}, epoch)
logger.add_scalars('{}/test_acc'.format(logger_note), {'acc_test':ppl_test}, epoch)
else:
logging.info('| Epoch {}/{} | Time: {:.2f}s | train loss {:.2f} | train ppl {:.2f} | test loss {:.2f} | test ppl {:.2f} |'\
.format(epoch+1, args.epochs, epoch_end_time-epoch_start_time, loss_train, ppl_train, loss_test, ppl_test))
logger_note = args.log
logger.add_scalars('{}/train_loss'.format(logger_note), {'loss_train': loss_train}, epoch)
logger.add_scalars('{}/train_ppl'.format(logger_note), {'ppl_train':ppl_train}, epoch)
logger.add_scalars('{}/test_loss'.format(logger_note), {'loss_test': loss_test}, epoch)
logger.add_scalars('{}/test_ppl'.format(logger_note), {'ppl_test':ppl_test}, epoch)
# Save the model if the validation loss is the best we've seen so far.
if loss_val < best_vloss:
save_model(model, args)
best_vloss = loss_val
# Anneal the learning rate if the validation loss plateaus
if epoch > 5 and loss_val >= max(all_vloss[-5:]):
lr = lr / 2.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
all_vloss.append(loss_val)
except KeyboardInterrupt:
# after Ctrl + C, print final result
logging.info('-' * 40)
logging.info('Exiting from training early')
model = load_model(model, args)
loss_test, ppl_test = evaluate(model, test_dataloader, criterion, n_dict, args)
logging.info('-' * 40)
logging.info("log = {}".format(args.log))
logging.info("Number of parameters = {}".format(num_parameters_train))
if args.dataset_name == 'mnist':
logging.info('| test loss {:.2f} | test acc {:.2f}'.format(loss_test, ppl_test))
else:
logging.info('| test loss {:.2f} | test ppl {:.2f}'.format(loss_test, ppl_test))
logging.info('-' * 40)
logger.close()
end_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# store result
record(end_time, args.path_results, args.dataset_name, args.optim, args.key_size, args.vhdropout,
args.levels, args.batch_size, args.epochs, args.lr, args.num_subblocks, args.en_res, args.temp_attn,
loss_test, ppl_test, num_parameters_train, args.log)
# print final result
logger.close()
model = load_model(model, args)
loss_test, ppl_test = evaluate(model, test_dataloader, criterion, n_dict, args)
logging.info('-' * 40)
logging.info("log = {}".format(args.log))
logging.info("Number of parameters = {}".format(num_parameters_train))
if args.dataset_name == 'mnist':
logging.info('| test loss {:.2f} | test acc {:.2f}'.format(loss_test, ppl_test))
else:
logging.info('| test loss {:.2f} | test ppl {:.2f}'.format(loss_test, ppl_test))
logging.info('-' * 40)
# store attention weights
if args.temp_attn:
save_visual_info(visual_info_all, args)
end_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# store result
record(end_time, args.path_results, args.dataset_name, args.optim, args.key_size, args.vhdropout, args.levels, args.batch_size, \
args.epochs, args.lr, args.num_subblocks, args.en_res, args.temp_attn, loss_test, ppl_test, num_parameters_train, args.log)
def evaluate(model, dataloader, criterion, n_dict, args):
model.eval()
total_loss = 0
processed_data_size = 0
correct_total = 0
with torch.no_grad():
for data_batch, label_batch in dataloader:
data_batch = data_batch.cuda(args.gpu_id)
label_batch = label_batch.cuda(args.gpu_id)
if args.temp_attn:
output_batch, _ = model(data_batch)
else:
output_batch = model(data_batch)
# Discard the effective history, just like in training
if args.dataset_name != 'mnist':
eff_history = args.seq_len - args.valid_len
output_batch = output_batch[:, eff_history:].contiguous().view(-1, n_dict)
label_batch = label_batch[:, eff_history:].contiguous().view(-1)
else:
pred = output_batch.data.max(1, keepdim=True)[1]
correct_total += pred.eq(label_batch.data.view_as(pred)).cpu().sum()
loss = criterion(output_batch, label_batch)
if args.dataset_name != 'mnist':
total_loss += (data_batch.size(1) - eff_history) * loss.item()
processed_data_size += data_batch.size(1) - eff_history
else:
total_loss += loss.item()
processed_data_size += 1
if args.dataset_name == 'mnist':
acc = 100*float(correct_total)/len(dataloader.dataset)
loss = round(total_loss / processed_data_size, 6)
return loss, acc
else:
loss = round(total_loss / processed_data_size, 6)
ppl = round(np.exp(loss), 4)
return loss, ppl
if __name__ == '__main__':
# original tcn
# args = Config(optim='SGD', dataset_name='penn', lr=4, epochs=150, batch_size=64, gpu_id=0, temp_attn=False, en_res=False, log="tcn_ori")
# word-penn
# args = Config(optim='Adam', key_size=600, lr=1e-4, epochs=150, gpu_id=1, num_subblocks=1, log="tcanet_test")
# char_penn
# args = Config(optim='Adam', dataset_name='char_penn', lr=1e-4, epochs=3, batch_size=256, gpu_id=1, en_res=True,
# dropout=0.1, emb_dropout=0.1, levels=3, emsize=100, nhid=450, key_size=100, valid_len=320, seq_len=400,
# temp_attn=False, log="tcanet_char_penn_test")
# train(args)
processes = []
args_list = [
###### char_penn
# Config(optim='Adam', dataset_name='char_penn', lr=1e-4, epochs=250, batch_size=128, gpu_id=0, en_res=False,
# dropout=0.1, emb_dropout=0.1, levels=6, emsize=100, nhid=450, key_size=100, valid_len=320, seq_len=400,
# temp_attn=True, visual=False, num_subblocks=1, continue_train=True, log="tcanet_char_penn_en_res-False_blocks-1_levels-6")
# Config(optim='Adam', dataset_name='char_penn', lr=4, epochs=200, batch_size=128, gpu_id=1, en_res=False,
# dropout=0.1, emb_dropout=0.1, levels=3, emsize=100, nhid=450, key_size=100, valid_len=320, seq_len=400,
# temp_attn=False, num_subblocks=2, log="tcanet_char_penn_ori")
###### word_penn
# Config(optim='Adam', key_size=300, lr=1e-4, epochs=200, gpu_id=1, num_subblocks=1, levels=4, en_res=True,
# temp_attn=True, visual=True, log="tcanet_num_subblocks-1_levels-4_verti_hori_without_conv")
# Config(optim='Adam', key_size=300, lr=1e-4, epochs=200, gpu_id=0, num_subblocks=1, levels=4, en_res=False,
# temp_attn=True, visual=True, log="tcanet_en_res-False_num_subblocks-1_levels-4_v_h"),
# Config(optim='Adam', key_size=300, lr=1e-4, epochs=200, gpu_id=1, num_subblocks=1, levels=6, en_res=True,
# temp_attn=True, seq_len=40, valid_len=40, visual=True, log="tcanet_seq_len-40_valid_len-40_levels-6")
Config(optim='Adam', key_size=300, lr=1e-4, epochs=200, gpu_id=2, num_subblocks=0, levels=4, en_res=False,
temp_attn=True, seq_len=80, valid_len=40, conv=False, visual=False, log="tcanet_num_subblocks-1_levels-4_conv-False")
###### sequential mnist
# Config(optim='Adam', dataset_name='mnist', key_size=25, lr=2e-3, epochs=100, gpu_id=0, num_subblocks=3, levels=4,
# batch_size=64, dropout=0.05, clip=-1, ksize=7, nhid=25, permute=False, num_workers=4, emsize=1, seq_len=784,
# temp_attn=True, en_res=True, visual=False, continue_train=True, log="tcanet_mnist_num_blocks-3_levels-4_permute-False")
###### permute mnist
# Config(optim='Adam', dataset_name='mnist', key_size=25, lr=1e-4, epochs=200, gpu_id=1, num_subblocks=1, levels=10,
# batch_size=64, dropout=0.05, clip=-1, ksize=7, nhid=25, permute=True, num_workers=4, emsize=1, seq_len=784,
# log="tcanet_mnist_num_blocks-1_levels-10_permute-True")
###### wikitext-2
# Config(optim='Adam', dataset_name='wikitext-2', key_size=600, lr=1e-4, epochs=300, gpu_id=0, num_subblocks=1,
# levels=6, en_res=False, temp_attn=True, visual=False, log="tcanet_wt-2_num_subblocks-1_levels-6_en_res-False")
###### wikitext-103
# Config(optim='Adam', dataset_name='wikitext-103', key_size=1000, lr=1e-4, epochs=300, gpu_id=0, num_subblocks=1,
# levels=6, en_res=False, temp_attn=True, visual=False, log="tcanet_wt-2_num_subblocks-1_levels-6_en_res-False")
]
num_processes = len(args_list)
for i in range(num_processes):
p = mp.Process(target=train, args=([args_list[i],]))
p.start()
processes.append(p)
for p in processes:
p.join()