-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathpredict.py
53 lines (45 loc) · 1.65 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import random
import numpy as np
import soundfile as sf
import torch
from cog import BasePredictor, Input, Path
from audiosr import build_model, super_resolution
os.environ["TOKENIZERS_PARALLELISM"] = "true"
torch.set_float32_matmul_precision("high")
class Predictor(BasePredictor):
def setup(self, model_name="basic", device="auto"):
self.model_name = model_name
self.device = device
self.sr = 48000
self.audiosr = build_model(model_name=self.model_name, device=self.device)
def predict(self,
input_file: Path = Input(description="Audio to upsample"),
ddim_steps: int = Input(description="Number of inference steps", default=50, ge=10, le=500),
guidance_scale: float = Input(description="Scale for classifier free guidance", default=3.5, ge=1.0, le=20.0),
seed: int = Input(description="Random seed. Leave blank to randomize the seed", default=None)
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = random.randint(0, 2**32 - 1)
print(f"Setting seed to: {seed}")
waveform = super_resolution(
self.audiosr,
input_file,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
latent_t_per_second=12.8
)
out_wav = (waveform[0] * 32767).astype(np.int16).T
sf.write("out.wav", data=out_wav, samplerate=48000)
return Path("out.wav")
if __name__ == "__main__":
p = Predictor()
p.setup()
out = p.predict(
"example/music.wav",
ddim_steps=50,
guidance_scale=3.5,
seed=42
)