-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperspectivecorrection.py
216 lines (137 loc) · 6.61 KB
/
perspectivecorrection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from PIL import Image, ImageDraw
import numpy as np
# User identifies a pair of horizontal line segments and a pair of vertical line segments.
# Extend line segments until they form a quadrilateral.
# Find intersection for each pair of lines in projective space.
# Detect position of focal plane.
# Find vector normal to target plane.
# Project vertices of quadrilateral in focal plane onto target plane.
# Rotate target plane so that it's orthogonal to the line of sight.
# Project vertices of quadrilateral (should be a rectangle) in target plane to focal plane.
# Use old points along with new points to warp the perspective of the image accordingly.
# Allow user to constrain crop the output and export the corrected image.
def intersect(l1, l2):
'''
Finds the intersection of the two lines l1 and l2.
Input:
l1 = [(x11, y11), (x12, y12)], list of two points on l1.
l2 = [(x21, y21), (x22, y22)], list of two points on l2.
Output:
(x, y), point of intersection.
'''
p1, q1 = [np.array([*p, 1]) for p in l1]
p2, q2 = [np.array([*p, 1]) for p in l2]
n1, n2 = np.cross(p1, q1), np.cross(p2, q2)
x, y, z = np.cross(n1, n2)
## Assume for now that z cannot equal 0
return (x/z, y/z)
def get_focal_distance(p1, p2, sensor):
'''
Given two points p1 and p2 on a focal plane at an unknown distance corresponding to
vanishing points of perpendicular lines, this function finds the correct focal distance.
Input:
p1 = (x1, y1), point on focal plane.
p2 = (x2, y2), point on focal plane.
sensor = (x, y), xy-coordinates of sensor.
Output:
d, focal distance
'''
x1, y1 = p1 - sensor
x2, y2 = p2 - sensor
return np.sqrt(- x1 * x2 - y1 * y2)
def project_to_plane(points, sensor, n, t):
'''
Project list of points onto plane normal to n passing through t.
Input:
points = [p1, p2, ...], list of points to be projected.
sensor = (x, y, z), coordinates of sensor.
n = np.array([[nx, ny, nz]]), normal vector defining plane.
t = np.array([[tx, ty, tz]]), point on plane.
Output:
p_points = [new_p1, new_p2, ...], list of projected points.
'''
p_points = []
for point in points:
p = point - sensor
c = np.dot(n, t.T) / np.dot(n, p.T)
p_points.append(c * p + sensor)
return p_points
def find_perspective_coeffs(pa, pb):
# taken from here:
# https://stackoverflow.com/questions/14177744/how-does-perspective-transformation-work-in-pil
matrix = []
for p1, p2 in zip(pa, pb):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
A = np.matrix(matrix, dtype=np.float)
B = np.array(pb).reshape(8)
res = np.dot(np.linalg.inv(A.T * A) * A.T, B)
return np.array(res).reshape(8)
def draw_lines(image, lines, r):
draw = ImageDraw.Draw(image)
for p, q in lines:
draw.ellipse((p[0]-r, p[1]-r, p[0]+r, p[1]+r), fill = "#007fff")
draw.ellipse((q[0]-r, q[1]-r, q[0]+r, q[1]+r), fill = "#007fff")
draw.line((*p, *q), fill = "#007fff", width = r)
def find_persp_coeffs_from_lines(horizontal_lines, vertical_lines, sensor):
'''
Given lines which should be horizontal and lines which should be vertical
in an image, along with the position of a sensor in 3-space, this function
finds the perspective coefficients needed to warp the perspective so that
the lines become truly horizontal and vertical.
Input:
horizontal_lines = [[(xh11, yh11), (xh12, yh12)], [(xh21, yh21), (xh22, yh22)]],
a pair of user-identified horizontal lines, each given by a list of two points.
vertical_lines = [[(xv11, yv11), (xv12, yv12)], [(xv21, yv21), (xv22, yv22)]],
a pair of user-identified vertical lines, each given by a list of two points.
sensor = np.array([[x, y, z]]), the location of the sensor.
Output:
coeffs = np.array([c0, ..., c7]), the required perspective coefficients.
'''
# Get quadrilateral vertices by intersecting horizontal lines with vertical lines
quad = [intersect(hl, vl) for hl in horizontal_lines for vl in vertical_lines]
# Find intersection of "horizontal" lines and intersection of "vertical" lines
h_int, v_int = intersect(quad[:2], quad[2:4]), intersect(quad[0:4:2], quad[1:5:2])
## Assume for now that these intersections both exist.
## If they both don't exist, we just need to rotate the image.
## If one exists but the other doesn't, focal distance might not be computable.
# Detect focal distance using intersections
focal_distance = get_focal_distance(np.array(h_int), np.array(v_int), sensor[0][:2])
# Find vector normal to target plane
h_direction = np.array([[*h_int, focal_distance]]) - sensor
v_direction = np.array([[*v_int, focal_distance]]) - sensor
target_normal = np.cross(h_direction, v_direction)
sgn = target_normal[0][2]/abs(target_normal[0][2])
target_normal /= np.linalg.norm(target_normal) * sgn
# Project quad onto target plane (which should result in a rectangle on target)
target_shift = np.array([[0, 0, focal_distance]])
quad = [np.array([[*v, focal_distance]]) for v in quad]
target_rect = project_to_plane(quad, sensor, target_normal, target_shift)
# Rotate target plane so normal points forward and rectangle aligns with axes
h_axis = (target_rect[1] - target_rect[0]) / np.linalg.norm(target_rect[1] - target_rect[0])
h_axis *= h_axis[0][0]/abs(h_axis[0][0])
R = np.vstack((h_axis, np.cross(target_normal, h_axis), target_normal)).T
rotate_rect = [np.dot(point - sensor - target_shift, R) + sensor + target_shift for point in target_rect]
rect_center = 0.5 * (rotate_rect[0] + rotate_rect[3])
centered_rect = [v - rect_center + sensor + 2*target_shift for v in rotate_rect]
# Project centered_rect back to focal plane to get corrected quad
rect = project_to_plane(centered_rect, sensor, np.array([[0, 0, 1]]), target_shift)
# Find perspective coefficients mapping quad to rect
rect = [v[0][:2] for v in rect]
quad = [v[0][:2] for v in quad]
coeffs = find_perspective_coeffs(rect, quad)
return coeffs
if __name__ == "__main__":
file = "./test_images/test_3.png"
image = Image.open(file)
width, height = image.size
sensor = np.array([[width/2, height/2, 0]])
# Express a line as a list containing two points on the line
horizontal_lines = [[(1293, 366), (1863, 1193)], [(418, 2519), (1487, 2003)]]
vertical_lines = [[(1293, 364), (422, 2527)], [(1868, 1177), (1495, 2001)]]
# Run main function on extracted lines
coeffs = find_persp_coeffs_from_lines(horizontal_lines, vertical_lines, sensor)
# Warp original image to correct perspective
corrected_image = image.transform((width, height), Image.PERSPECTIVE, coeffs, Image.BICUBIC)
image.show()
corrected_image.show()