-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
250 lines (177 loc) · 7.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import pandas as pd
import numpy as np
class NB:
def __init__(self, target, dataframe):
self.df = dataframe
# Target/Category Column
self.c_n = target
# Column Names
self.cols = list(self.df.columns)
self.cols.remove(self.c_n)
# Determine Continuous or Discrete for each Columns
self.rv = {}
self.determine_rv_for_all()
# Likelihoods of Discrete Random Variables
self.store = {}
self.discrete_likelihood_for_all()
#Calculating the means & standard-deviation for continuous features
self.mean_std = {}
self.sample_mean_std_cal()
def discrete_likelihood_cal(self, x, y, z):
"""
x -> Column Name (String)
y -> Column Value (String)
z -> Class value (String)
c_n -> Class Name (Target) # Not an Argument here #
Returns -> P(x = y | c_n = z)
"""
df = self.df
if x not in self.cols:
raise KeyError("Feature(column) not present in the Training Dataset")
res = (1+len(df[(df[x] == y) & (df[self.c_n] == z)])) /(len(df[df[self.c_n] == z]) + len(df[x].unique()))
"""if res == 0.0:
return 1/(len(df[df[self.c_n] == z]) + len(df[x].unique()))"""
return res
def discrete_likelihood_for_all(self):
df = self.df
discrete_cols = [x for x in self.cols if self.rv[x] == 'discrete']
dict1 = {}
for x in discrete_cols:
dict2 = {}
for y in df[x].unique():
dict3 = {}
for z in df[self.c_n].unique():
#print('P({}="{}"|{}="{}") = {}'.format(x,y,self.c_n,z,self.discrete_likelihood_cal(x, y, z)))
dict3[z] = self.discrete_likelihood_cal(x, y, z)
dict2[y] = dict3
dict1[x] = dict2
self.store = dict1
def determine_rv(self, x):
"""
x -> Column Name
"""
df = self.df
val = list(df[x])[0]
if type(val) == str or (type(val) == int and len(df[x].unique()) < len(df[x])):
return 'discrete'
return 'continuous'
def determine_rv_for_all(self):
"""
self.rv = {}
"""
self.rv = {x:self.determine_rv(x) for x in self.cols}
def sample_mean_std_cal(self):
"""
Calculates mean and variance of each combinations required.
And stores it in self.mean_std Dictionary for later use.
"""
df = self.df
continuous_cols = [x for x in self.cols if self.rv[x] == 'continuous']
dict1 = {}
for column_name in continuous_cols:
dict2 = {}
for class_val in df[self.c_n].unique():
sample = df[df[self.c_n] == class_val][column_name]
mu = np.mean(sample)
sigma = np.std(sample)
dict2[class_val] = (mu, sigma)
dict1[column_name] = dict2
self.mean_std = dict1
def normal_pdf(self, mu, sigma, x):
expr = np.exp((-1/2)*(((x-mu)/sigma)**2))/(np.sqrt(2*np.pi*sigma))
return expr
def continuous_likelihood_cal(self, column_name, column_val, class_val):
df = self.df
#sample = df[df[self.c_n] == class_val][column_name]
#mu = np.mean(sample)
#sigma = np.std(sample)
mu,sigma = self.mean_std[column_name][class_val]
return self.normal_pdf(mu, sigma, column_val)
def likelihood_expr(self, class_val, expr):
val = 1
for k,v in expr:
if k not in self.cols:
raise KeyError("Feature(column) not present in the Training Dataset")
if self.rv[k] == 'discrete':
try:
store_val = self.store[k][v][class_val]
except:
store_val = self.discrete_likelihood_cal(k,v,class_val)
else:
store_val = self.continuous_likelihood_cal(k,v,class_val)
val *= store_val
return val
def prior(self, class_val):
df = self.df
return len(df[df[self.c_n] == class_val])/df.shape[0]
def predict(self, X):
df = self.df
if type(X) == pd.core.series.Series:
values_list = [list(X.items())]
elif type(X) == pd.core.frame.DataFrame:
values_list = [list(y.items()) for x,y in X.iterrows()]
else:
raise TypeError('{} is not supported type'.format(type(X)))
predictions_list = []
for values in values_list:
likelihood_priors = np.zeros(len(df[self.c_n].unique()))
for i,class_val in enumerate(df[self.c_n].unique()):
likelihood_priors[i] = self.prior(class_val)*self.likelihood_expr(class_val,values)
#print("likelihood_priors",likelihood_priors)
normalizing_prob = np.sum(likelihood_priors)
probabilities = likelihood_priors/normalizing_prob
#print("probabilities",probabilities)
if len(probabilities) == 2:
# For Binary Class Predictions
max_prob = df[self.c_n].unique()[np.argmax(probabilities)]
predictions_list.append(max_prob)
else:
# For Mulit Class Predictions
exp_1 = np.exp(probabilities)
exp_2 = np.sum(exp_1)
softmax = exp_1/exp_2
#print(softmax)
max_prob = df[self.c_n].unique()[np.argmax(softmax)]
predictions_list.append(max_prob)
return predictions_list
def accuracy_score(self, X, Y):
assert len(X) == len(Y), 'Given values are not equal in size'
total_matching_values = [x == y for x,y in zip(X,Y)]
return (np.sum(total_matching_values)/len(total_matching_values))*100
def calculate_confusion_matrix(self, X, Y):
df = self.df
unique_class_values = df[self.c_n].unique()
decimal_class_values = list(range(len(unique_class_values)))
numerical = {x:y for x,y in zip(unique_class_values, decimal_class_values)}
x = [numerical[x] for x in X]
y = [numerical[y] for y in Y]
n = len(decimal_class_values)
confusion_matrix = np.zeros((n,n))
for i,j in zip(x,y):
if i == j:
confusion_matrix[i][i] += 1
elif i != j:
confusion_matrix[i][j] += 1
return confusion_matrix
def precision_score(self, X, Y):
"""
Implemented Only for Binary Classes
X -> y_true
Y -> y_pred
"""
assert len(X) == len(Y), 'Given values are not equal in size'
confusion_matrix = self.calculate_confusion_matrix(X,Y)
tp = confusion_matrix[0][0]
fp = confusion_matrix[1][0]
return tp / (tp+fp)
def recall_score(self, X, Y):
"""
Implemented Only for Binary Classes
X -> y_true
Y -> y_pred
"""
assert len(X) == len(Y), 'Given values are not equal in size'
confusion_matrix = self.calculate_confusion_matrix(X,Y)
tp = confusion_matrix[0][0]
fn = confusion_matrix[0][1]
return tp / (tp+fn)