-
-
Notifications
You must be signed in to change notification settings - Fork 435
/
Copy pathop.go
335 lines (265 loc) · 11.1 KB
/
op.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
package gorgonia
import (
"fmt"
"hash"
"hash/fnv"
"github.com/chewxy/hm"
"github.com/pkg/errors"
"gorgonia.org/tensor"
)
// DimSizer is any type (typically a tensor.Shape) that allows querying for a dimension size given an input dimension.
type DimSizer interface {
DimSize(int) (int, error)
}
// ShapesToDimSizers is a convenience function to convert a slice of tensor.Shape to a slice of DimSizer
func ShapesToDimSizers(shapes []tensor.Shape) []DimSizer {
retVal := make([]DimSizer, len(shapes))
for i, s := range shapes {
retVal[i] = s
}
return retVal
}
// DimSizersToShapes is a convenience function to convert a slice of DimSizer to a slice of tensor.Shape. It will return an error if any of them isn't a tensor.Shape
func DimSizersToShapes(ds []DimSizer) ([]tensor.Shape, error) {
retVal := make([]tensor.Shape, len(ds))
var ok bool
for i, d := range ds {
if retVal[i], ok = d.(tensor.Shape); !ok {
return nil, errors.Errorf("Dimsizer %d is not a Shape.", i)
}
}
return retVal, nil
}
// An Op is a symbolic representation of an operation
// Think of them as functions, taking an input (or multiple), and outputting something
//
// All Ops have type signatures that look like this:
// OpName :: (Floats a) ⇒ Tensor a → Tensor a → Tensor a
type Op interface {
/* Graph Building Related Methods */
// Arity returns the number of inputs the Op expects. -1 indicates that it's n-ary and will be determined at runtime
Arity() int
// Informs the type of the Op (not the node). This will be used by the type system to infer the final type of the node
Type() hm.Type
// returns the output shape as a function of the inputs
InferShape(...DimSizer) (tensor.Shape, error)
/* Machine related */
// executes the op
Do(...Value) (Value, error)
/* Analysis Related Methods */
// indicates if the Op will return a pointer (allowing possible inplace edits) or by value
// if it's false, the return value of the Op will be a copy of its input
ReturnsPtr() bool
// Does this op potentially call external (cgo or cuda) functions (thereby requiring extra overhead for Go's trampolining thing)
CallsExtern() bool
// overwriteInput() is a method which states which input the output will be overwriting.
// This allows for some efficiency gains as the underlying arrays wouldn't have to be re-allocated.
// The method returns an int instead of a bool because potentially different operations may be allowed
// to overwrite certain inputs. For example, consider an operation to increment a value:
// the IncrementOp would be a unary operator, and assuming we would like to overwrite the input,
// the retVal of overwriteInput() will be 0 (inputs[0]).
// -1 is returned if overwriting of input is disallowed
OverwritesInput() int
/* Other methods */
WriteHash(h hash.Hash)
Hashcode() uint32
fmt.Stringer
}
// A UnaryOp is an Op that takes only one input
type UnaryOp interface {
Op
IsUnary() bool
}
// A BinaryOp is an Op that takes only two inputs
type BinaryOp interface {
Op
IsBinary() bool
}
// A NoRetOp is an Op that reads a value, but does not return any value. It's a representation of a not-pure function
type NoRetOp interface {
Op
ReturnsNothing() bool
}
// An ADOp is an Op that supports automatic differentiation.
type ADOp interface {
Op
DoDiff(ctx ExecutionContext, inputs Nodes, output *Node) error
}
// A SDOp is an Op that supports symbolic differentiation
type SDOp interface {
Op
// DiffWRT indicates if the op is differentiable with regards to the given number of inputs
// returns []bool to indicate which input it is differentiable to
DiffWRT(inputs int) []bool
// SymDiff symbolically differentiates the op
SymDiff(inputs Nodes, output, grad *Node) (retVal Nodes, err error)
}
// ReductionOp changes the shape of the node
type ReductionOp interface {
Op
IsReduction() bool
}
// A TrainModeOp is an Op that supports modes to enable/disable training
type TrainModeOp interface {
SetTraining(isTraining bool) error
}
// IncrDoer increments the toIncr with the result of doing
type IncrDoer interface {
IncrDo(toIncr Value, inputs ...Value) error
}
// UsePreallocDoer is an op that works when a preallocated value is provided
type UsePreallocDoer interface {
UsePreallocDo(prealloc Value, inputs ...Value) (Value, error)
}
// UnsafeDoer is an op that will overwrite the underlying value.
type UnsafeDoer interface {
UnsafeDo(inputs ...Value) (Value, error)
}
// CUDADoer uses CUDA to perform the Op.
type CUDADoer interface {
CUDADo(extern External, dev Device, prealloc Value, inputs ...Value) (retVal Value, err error)
}
// CLDoer uses OpenCL to perform the Op. As of now, there are NO Ops that support OpenCL
type CLDoer interface {
CLDo(inputs ...Value) (Value, error)
}
// A CUDAADOp operation have a specific method to run with CUDA
type CUDAADOp interface {
ADOp
CUDADoDiff(extern External, dev Device, inputs Nodes, output *Node) error
}
// ApplyOp is the generic function application - for when no specialization is required
func ApplyOp(op Op, children ...*Node) (retVal *Node, err error) {
var g *ExprGraph
for _, child := range children {
if child.g != nil {
g = child.g
break
}
}
if g == nil {
return nil, errors.New("No Graph Supplied")
}
if !Nodes(children).AllSameGraph() {
return nil, errors.New("Not all children have the same graph")
}
// typecheck before creating
typeSysLogf("Inferring node type of %v :: %v with children: %#Y", op, op.Type(), Nodes(children))
enterLogScope()
defer leaveLogScope()
var retType hm.Type
if retType, err = inferNodeType(op, children...); err != nil {
return nil, errors.Wrapf(err, "Type inference error. Op: %v. Children: %#Y, OpType:%v", op, Nodes(children), op.Type())
}
typeSysLogf("Done inferring. Return type is: %#v(%T)", retType, retType)
// infer shapes, but print errors instead of returning
shapeLogf("op: %v(%T) inferring shape", op, op)
if err = checkArity(op, len(children)); err != nil {
return
}
ds := Nodes(children).dimSizers()
var s tensor.Shape
if s, err = op.InferShape(ds...); err == nil {
shapeLogf("inferred shape %v", s)
retVal = NewUniqueNode(WithType(retType), WithOp(op), WithChildren(children), In(g), WithShape(s...))
} else {
err = errors.Wrapf(err, "Failed to infer shape. Op: %v", op)
// retVal = newUniqueNode(withType(retType), withOp(op), withChildren(children), withGraph(g))
}
returnDimSizers(ds)
return
}
// ApplyOpWithName applies the op, and then gives the node the given name
func ApplyOpWithName(op Op, name string, children ...*Node) (retVal *Node, err error) {
if retVal, err = ApplyOp(op, children...); err == nil {
WithName(name)(retVal)
} else {
return nil, errors.Wrap(err, applyOpFail)
}
return
}
// a constant is an unchanging value. I think everyone would know what a constant is
// a constant op is an op that creates a constant. It is also a Value of a constant value
type constant interface {
Op
isconstant() bool
Value() Value
}
type constantScalar struct {
v Scalar
}
func (c constantScalar) Arity() int { return 0 }
func (c constantScalar) Type() hm.Type { return TypeOf(c.v) }
func (c constantScalar) InferShape(...DimSizer) (tensor.Shape, error) { return scalarShape, nil }
func (c constantScalar) ReturnsPtr() bool { return false }
func (c constantScalar) CallsExtern() bool { return false }
func (c constantScalar) OverwritesInput() int { return -1 }
func (c constantScalar) DiffWRT(i int) []bool { return nil }
func (c constantScalar) SymDiff(Nodes, *Node, *Node) (Nodes, error) { return nil, nil }
func (c constantScalar) Do(...Value) (Value, error) { return c.v, nil }
func (c constantScalar) String() string { return fmt.Sprintf("const %s", c.v) }
func (c constantScalar) WriteHash(h hash.Hash) {
fmt.Fprintf(h, "const %v: %v", TypeOf(c.v), c.v)
}
func (c constantScalar) Hashcode() uint32 {
h := fnv.New32a()
c.WriteHash(h)
return h.Sum32()
}
func (c constantScalar) isconstant() bool { return true }
func (c constantScalar) Value() Value { return c.v }
type constantTensor struct {
v tensor.Tensor
}
func (c constantTensor) Arity() int { return 1 }
func (c constantTensor) Type() hm.Type { return TypeOf(c.v) }
func (c constantTensor) InferShape(...DimSizer) (tensor.Shape, error) { return c.v.Shape(), nil }
// danger! The only reason why this is the case is because matrices may be too large. copying is costly.
// constants should return value but for the sake of memory, we're going to return pointers
func (c constantTensor) ReturnsPtr() bool { return true }
func (c constantTensor) OverwritesInput() int { return -1 }
func (c constantTensor) CallsExtern() bool { return false }
func (c constantTensor) DiffWRT(i int) []bool { return nil }
func (c constantTensor) SymDiff(Nodes, *Node, *Node) (Nodes, error) { return nil, nil }
func (c constantTensor) Do(...Value) (Value, error) { return c.v, nil }
func (c constantTensor) String() string { return fmt.Sprintf("const %s", TypeOf(c.v)) }
func (c constantTensor) WriteHash(h hash.Hash) {
fmt.Fprintf(h, "const %v:%v", c.Type(), c.v)
}
func (c constantTensor) Hashcode() uint32 {
h := fnv.New32a()
c.WriteHash(h)
return h.Sum32()
}
func (c constantTensor) isconstant() bool { return true }
func (c constantTensor) Value() Value { return c.v }
type Iop struct{}
// Arity returns 1
func (i Iop) Arity() int { return 1 }
// Type returns a → a
func (i Iop) Type() hm.Type { return hm.NewFnType(hm.TypeVariable('a'), hm.TypeVariable('a')) }
// InferShape returns the output shape as a function of the inputs
func (i Iop) InferShape(ds ...DimSizer) (tensor.Shape, error) { return ds[0].(tensor.Shape), nil }
// Do executes the op
func (i Iop) Do(vs ...Value) (Value, error) { return vs[0], nil }
// ReturnsPtr indicates if the Op will return a pointer (allowing possible inplace edits) or by value
// if it's false, the return value of the Op will be a copy of its input
func (i Iop) ReturnsPtr() bool { return true }
// CallsExtern returns false.
func (i Iop) CallsExtern() bool { return false }
// OverwritesInput is a method which states which input the output will be overwriting.
// This allows for some efficiency gains as the underlying arrays wouldn't have to be re-allocated.
// The method returns an int instead of a bool because potentially different operations may be allowed
// to overwrite certain inputs. For example, consider an operation to increment a value:
// the IncrementOp would be a unary operator, and assuming we would like to overwrite the input,
// the retVal of overwriteInput() will be 0 (inputs[0]).
// -1 is returned if overwriting of input is disallowed
func (i Iop) OverwritesInput() int { return -1 }
/* Other methods */
func (i Iop) WriteHash(h hash.Hash) { fmt.Fprintf(h, "I") }
func (i Iop) Hashcode() uint32 {
h := fnv.New32a()
i.WriteHash(h)
return h.Sum32()
}
func (i Iop) String() string { return "I" }