Skip to content

Question: I can't release the memory in gpu during execute nt.empirical_ntk_fn #146

Open
@kkeevin123456

Description

I have follow the solution in RuntimeError: UNKNOWN: Failed to determine best cudnn convolution algorithm #8506
and High GPU memory during empirical NTK calculation #100

But it doesn't work for me.

This code can reproduce the problem:

import numpy as np
import cupy as cp
import torch
import torchvision.datasets as datasets
import torch.nn.functional as F

import jax
from jax import random
import jax.numpy as jnp
from jax.example_libraries import optimizers
from jax import jit, grad, vmap, pmap
import functools
import neural_tangents as nt
from neural_tangents import stax

from tqdm import tqdm
import gc

mempool = cp.get_default_memory_pool()
pinned_mempool = cp.get_default_pinned_memory_pool()

%env XLA_PYTHON_CLIENT_MEM_FRACTION=0.8
mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=None)
class_5_idx = np.where(mnist_trainset.targets.numpy() == 5)
class_3_idx = np.where(mnist_trainset.targets.numpy() == 3)
class_5 = mnist_trainset.data[class_5_idx]
class_3 = mnist_trainset.data[class_3_idx]
M = 200
W = H = 28
C = 1
P = 200
eta = 0.1

inputs = np.vstack((class_5[:P//2], class_3[:P//2]))
idx = np.arange(P)
np.random.shuffle(idx)
inputs = inputs[idx].reshape(-1, 28, 28, 1).astype('float32')

ys = np.vstack((*np.ones(P//2), *np.zeros(P//2)))
ys = ys[idx].astype('float32')

# kernel for all layers
init_fn, apply_fn, kernel_fn = stax.serial(
    stax.Conv(10, (5, 5), (1, 1), 'SAME'), stax.Relu(),  # shape (output_c, filter_size, stride_size)
    stax.Flatten(),
    stax.Dense(M), stax.Relu(),
    stax.Dense(1)
)

# kernel for first layer
init_fn_a, apply_fn_a, kernel_fn_a = stax.serial(
    stax.Conv(10, (5, 5), (1, 1), 'SAME'), stax.Relu(),
    stax.Flatten()
)

shape, params = init_fn(random.PRNGKey(np.random.randint(1e6)), inputs.shape)
eNTK = nt.empirical_ntk_fn(apply_fn, vmap_axes=0, trace_axes=(), implementation=2)

opt_init, opt_update, get_params = optimizers.sgd(eta)
opt_state = opt_init(params)

_eNTK_a = nt.empirical_ntk_fn(apply_fn_a, vmap_axes=0, trace_axes=(), implementation=2)

eNTK_a = jit(lambda x1, x2, params: _eNTK_a(x1, x2, params))

loss = jit(lambda params, x, y: 0.5 * jnp.mean((apply_fn(params, x) - y) ** 2))
grad_loss = jit(lambda state, x, y: grad(loss)(get_params(state), x, y))
nsteps = 1000

K_a = np.zeros((P, P))

for i in tqdm(range(nsteps)):
    opt_state = opt_update(i, grad_loss(opt_state, inputs, ys), opt_state)
    
    for j in range(P//2):
        for k in range(P//2):
            a = np.sum(eNTK_a(inputs[j:(j+1)*2], inputs[k:(k+1)*2], 
                                              [get_params(opt_state)[0], get_params(opt_state)[1], get_params(opt_state)[2]])
                                              , axis=(2, 3))
            K_a[j:(j+1)*2, k:(k+1)*2] = a
            print(mempool.used_bytes())              
            print(mempool.total_bytes())  
            print(pinned_mempool.n_free_blocks())
            a = cp.array(a)
            
            print(mempool.used_bytes())              
            print(mempool.total_bytes())  
            print(pinned_mempool.n_free_blocks())
            del a
            
            print(mempool.used_bytes())              
            print(mempool.total_bytes())
            print(pinned_mempool.n_free_blocks())
            
            mempool.free_all_blocks()
            pinned_mempool.free_all_blocks()
            gc.collect()
        break
    break

And after it run several iteration, the error happen.

image

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions