-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
eccdb0e
commit a8f60dd
Showing
1 changed file
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
import os | ||
import subprocess | ||
import torch | ||
import numpy as np | ||
from PIL import Image | ||
from pathlib import Path | ||
from huggingface_hub import hf_hub_download | ||
import folder_paths | ||
from transformers import AutoModel, AutoTokenizer | ||
|
||
# Define the directory for saving MiniCPM files | ||
MINICPM_PATH = Path(folder_paths.folder_names_and_paths["LLavacheckpoints"][0][0]) / "minicpm_files" | ||
MINICPM_PATH.mkdir(parents=True, exist_ok=True) | ||
|
||
# Available GGUF model variants and their file sizes (in GB) | ||
GGUF_MODELS = { | ||
"Q2_K (3GB)": "ggml-model-Q2_K.gguf", | ||
"Q3_K (3.8GB)": "ggml-model-Q3_K.gguf", | ||
"Q4_K_M (4.7GB)": "ggml-model-Q4_K_M.gguf", | ||
"Q5_K_M (5.4GB)": "ggml-model-Q5_K_M.gguf", | ||
"Q8_0 (8.1GB)": "ggml-model-Q8_0.gguf", | ||
"F16 (15.2GB)": "ggml-model-f16.gguf" | ||
} | ||
|
||
class MiniCPMPredictor: | ||
def __init__(self, model_name='openbmb/MiniCPM-V-2_6', context_length=4096, temp=0.7, | ||
top_p=0.8, top_k=100, repeat_penalty=1.05): | ||
self.context_length = context_length | ||
self.temp = temp | ||
self.top_p = top_p | ||
self.top_k = top_k | ||
self.repeat_penalty = repeat_penalty | ||
|
||
# Load model and tokenizer | ||
print(f"Loading model: {model_name}...") | ||
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True, | ||
attn_implementation='sdpa', torch_dtype=torch.bfloat16).eval().cuda() | ||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | ||
print("Model loaded successfully.") | ||
|
||
def generate(self, image_path, prompt): | ||
"""Generate response using the model""" | ||
image = Image.open(image_path).convert('RGB') | ||
msgs = [{'role': 'user', 'content': [image, prompt]}] | ||
|
||
try: | ||
response = self.model.chat( | ||
image=None, | ||
msgs=msgs, | ||
tokenizer=self.tokenizer | ||
) | ||
return response | ||
except Exception as e: | ||
return f"Error generating response: {str(e)}" | ||
|
||
class MiniCPMNode: | ||
def __init__(self): | ||
self.predictor = None | ||
self.current_model = None | ||
|
||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"image": ("IMAGE", {"tooltip": "Input image to be analyzed by MiniCPM-V"}), | ||
"prompt": ("STRING", { | ||
"multiline": True, | ||
"default": "Describe this image in detail.", | ||
"tooltip": "Instructions for the model. Be specific about what aspects of the image you want analyzed." | ||
}), | ||
"model_variant": (list(GGUF_MODELS.keys()), { | ||
"tooltip": "Model size/quality tradeoff. Smaller models (Q2-Q4) are faster but less accurate. Larger models (Q8, F16) provide better quality but require more VRAM." | ||
}), | ||
"context_length": ("INT", { | ||
"default": 4096, | ||
"min": 512, | ||
"max": 8192, | ||
"tooltip": "Maximum length of text context. Larger values allow longer conversations but use more memory. Default 4096 works well for most cases." | ||
}), | ||
"temperature": ("FLOAT", { | ||
"default": 0.7, | ||
"min": 0.1, | ||
"max": 2.0, | ||
"step": 0.1, | ||
"tooltip": "Controls randomness in generation. Lower values (0.1-0.5) are more focused and deterministic. Higher values (0.8-2.0) increase creativity and variance." | ||
}), | ||
"top_p": ("FLOAT", { | ||
"default": 0.8, | ||
"min": 0.1, | ||
"max": 1.0, | ||
"step": 0.1, | ||
"tooltip": "Nucleus sampling threshold. Lower values make responses more focused. Higher values allow more diverse word choices." | ||
}), | ||
"top_k": ("INT", { | ||
"default": 100, | ||
"min": 1, | ||
"max": 1000, | ||
"tooltip": "Limits the number of tokens considered for each generation step. Lower values increase focus, higher values allow more variety." | ||
}), | ||
"repeat_penalty": ("FLOAT", { | ||
"default": 1.05, | ||
"min": 1.0, | ||
"max": 2.0, | ||
"step": 0.05, | ||
"tooltip": "Penalizes word repetition. Values above 1.0 discourage repeated phrases. Higher values (>1.3) may affect fluency." | ||
}) | ||
} | ||
} | ||
|
||
RETURN_TYPES = ("STRING",) | ||
FUNCTION = "generate" | ||
CATEGORY = "VLM Nodes/MiniCPM-V" | ||
|
||
def download_model(self, model_filename): | ||
"""Download model files from Huggingface""" | ||
try: | ||
print(f"Downloading model: {model_filename}...") | ||
model_path = hf_hub_download( | ||
repo_id="openbmb/MiniCPM-V-2_6-gguf", | ||
filename=model_filename, | ||
local_dir=MINICPM_PATH, | ||
local_dir_use_symlinks=False | ||
) | ||
|
||
print("Downloading mmproj model if not exists...") | ||
mmproj_path = hf_hub_download( | ||
repo_id="openbmb/MiniCPM-V-2_6-gguf", | ||
filename="mmproj-model-f16.gguf", | ||
local_dir=MINICPM_PATH, | ||
local_dir_use_symlinks=False | ||
) | ||
|
||
print("Download complete.") | ||
return Path(model_path), Path(mmproj_path) | ||
except Exception as e: | ||
raise RuntimeError(f"Error downloading model: {str(e)}") | ||
|
||
def generate(self, image, prompt, model_variant, context_length=4096, | ||
temperature=0.7, top_p=0.8, top_k=100, repeat_penalty=1.05): | ||
|
||
# Get model filename from variant name | ||
model_filename = GGUF_MODELS[model_variant] | ||
|
||
# Initialize or update predictor if needed | ||
if (self.predictor is None or | ||
self.current_model != model_filename): | ||
|
||
# Download model if needed | ||
model_path, mmproj_path = self.download_model(model_filename) | ||
|
||
# Initialize predictor | ||
try: | ||
self.predictor = MiniCPMPredictor( | ||
model_name='openbmb/MiniCPM-V-2_6', | ||
context_length=context_length, | ||
temp=temperature, | ||
top_p=top_p, | ||
top_k=top_k, | ||
repeat_penalty=repeat_penalty | ||
) | ||
self.current_model = model_filename | ||
except Exception as e: | ||
return (f"Error initializing model: {str(e)}",) | ||
|
||
# Save input image temporarily | ||
temp_image = MINICPM_PATH / "temp_input.png" | ||
Image.fromarray(np.uint8(image[0] * 255)).save(temp_image) | ||
|
||
try: | ||
# Generate response | ||
response = self.predictor.generate(temp_image, prompt) | ||
|
||
# Clean up | ||
temp_image.unlink(missing_ok=True) | ||
|
||
return (response,) | ||
|
||
except Exception as e: | ||
return (f"Error during generation: {str(e)}",) | ||
|
||
# Register the node | ||
NODE_CLASS_MAPPINGS = { | ||
"MiniCPMNode": MiniCPMNode | ||
} | ||
|
||
NODE_DISPLAY_NAME_MAPPINGS = { | ||
"MiniCPMNode": "MiniCPM-V Model" | ||
} |