Skip to content

gfx-rs/wgpu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

wgpu

Matrix Matrix Build Status codecov.io

wgpu is a cross-platform, safe, pure-rust graphics api. It runs natively on Vulkan, Metal, D3D12, D3D11, and OpenGLES; and on top of WebGPU on wasm.

The api is based on the WebGPU standard. It serves as the core of the WebGPU integration in Firefox, Servo, and Deno.

Repo Overview

The repository hosts the following libraries:

  • Crates.io docs.rs - User facing Rust API.
  • Crates.io docs.rs - Internal WebGPU implementation.
  • Crates.io docs.rs - Internal unsafe GPU API abstraction layer.
  • Crates.io docs.rs - Rust types shared between all crates.
  • Crates.io - WebGPU implementation for the Deno JavaScript/TypeScript runtime

The folowing binaries:

  • cts_runner - WebGPU Conformance Test Suite runner using deno_webgpu.
  • player - standalone application for replaying the API traces.
  • wgpu-info - program that prints out information about all the adapters on the system or invokes a command for every adapter.

For an overview of all the components in the gfx-rs ecosystem, see the big picture.

Getting Started

Rust

Rust examples can be found at wgpu/examples. You can run the examples with cargo run --example name. See the list of examples. For detailed instructions, look at our Get Started wiki.

If you are looking for a wgpu tutorial, look at the following:

C/C++

To use wgpu in C/C++, you need wgpu-native.

Others

If you want to use wgpu in other languages, there are many bindings to wgpu-native from languages such as Python, D, Julia, Kotlin, and more. See the list.

Community

We have three different matrix rooms that form the wgpu community:

  • Matrix - Discussion of the library's development.
  • Matrix - Discussion of using the library and the surrounding ecosystem.
  • Matrix - Discussion of everything else.

Wiki

We have a wiki that serves as a knowledge base.

Supported Platforms

API Windows Linux & Android macOS & iOS
Vulkan βœ… βœ…
Metal βœ…
DX12 βœ… (W10 only)
DX11 🚧
GLES3 πŸ†—

βœ… = First Class Support β€” πŸ†— = Best Effort Support β€” 🚧 = Unsupported, but support in progress

Environment Variables

All testing and example infrastructure shares the same set of environment variables that determine which Backend/GPU it will run on.

  • WGPU_ADAPTER_NAME with a substring of the name of the adapter you want to use (ex. 1080 will match NVIDIA GeForce 1080ti).
  • WGPU_BACKEND with a comma separated list of the backends you want to use (vulkan, metal, dx12, dx11, or gl).
  • WGPU_POWER_PREFERENCE with the power preference to choose when a specific adapter name isn't specified (high or low)

When running the CTS, use the variables DENO_WEBGPU_ADAPTER_NAME, DENO_WEBGPU_BACKEND, DENO_WEBGPU_POWER_PREFERENCE.

Testing

We have multiple methods of testing, each of which tests different qualities about wgpu. We automatically run our tests on CI if possible. The current state of CI testing:

Backend/Platform Status
DX12/Windows 10 βœ”οΈ (over WARP)
DX11/Windows 10 🚧 (over WARP)
Metal/MacOS ❌ (no CPU runner)
Vulkan/Linux ❌ (lavapipe segfaults)
GLES/Linux ❌ (egl fails init)

Core Test Infrastructure

All framework based examples have image comparison tested against their screenshot.

To run the test suite on the default device:

cargo test --no-fail-fast

There's logic which can automatically run the tests once for each adapter on your system.

cargo run --bin wgpu-info -- cargo test --no-fail-fast

Then to run an example's image comparison tests, run:

cargo test --example <example-name> --no-fail-fast

Or run a part of the integration test suite:

cargo test -p wgpu -- <name-of-test>

If you are a user and want a way to help contribute to wgpu, we always need more help writing test cases.

WebGPU Conformance Test Suite

WebGPU includes a Conformance Test Suite to validate that implementations are working correctly. We can run this CTS against wgpu.

To run the CTS, first you need to check it out:

git clone https://github.com/gpuweb/cts.git
cd cts
# works in bash and powershell
git checkout $(cat ../cts_runner/revision.txt)

To run a given set of tests:

# Must be inside the cts folder we just checked out, else this will fail
cargo run --manifest-path ../cts_runner/Cargo.toml --frozen -- ./tools/run_deno --verbose "<test string>"

To find the full list of tests, go to the online cts viewer.

The list of currently enabled CTS tests can be found here.

Coordinate Systems

wgpu uses the coordinate systems of D3D and Metal:

Render Depth Texture
render_coordinates depth_coordinates texture_coordinates