This folder contains the code and scripts for the Gaussian mixture model (GMM) experiments.
We give an example of MCMC unlearning with SGLD. Other experiment scripts can be found in ./scripts.
python train.py \
--cpu \
--gmm-kk 4 \
--gmm-std 1 \
--optim sgld \
--batch-size 64 \
--burn-in-steps 4000 \
--eval-freq 100 \
--lr 4 \
--lr-decay-exp -0.5005 \
--ifs-scaling 1 \
--ifs-iter-T 32 \
--ifs-samp-T 5 \
--ifs-iter-bs 64 \
--ifs-rm-bs 4 \
--ifs-kill-num 0 \
--samp-num 4000 \
--save-dir ./exp_data/gmm/sgld \
--save-name full
python forget.py \
--cpu \
--gmm-kk 4 \
--gmm-std 1 \
--optim sgld \
--batch-size 64 \
--burn-in-steps 2000 \
--eval-freq 100 \
--lr 4 \
--lr-decay-exp -0.5005 \
--ifs-scaling 1 \
--ifs-iter-T 32 \
--ifs-samp-T 5 \
--ifs-iter-bs 64 \
--ifs-rm-bs 4 \
--ifs-kill-num 800 \
--resume-path ./exp_data/gmm/sgld/full-model.pkl \
--save-dir ./exp_data/gmm/sgld \
--save-name forget