-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathUAV.py
251 lines (215 loc) · 10.7 KB
/
UAV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# -*- coding: utf-8 -*-
import math
import random
import pandas as pd
import random
def generate_coordinates(num_centers, num_unloading_points):
centers = []
unloading_points = []
# 生成配送中心坐标
for _ in range(num_centers):
center_x = random.randint(0, 50) # 假设配送区域是一个50x50的区域
center_y = random.randint(0, 50)
centers.append((center_x, center_y))
# 生成卸货点坐标
for _ in range(num_unloading_points):
while True:
unloading_x = random.randint(0, 50)
unloading_y = random.randint(0, 50)
closest_center = min(centers, key=lambda c: distance(c, (unloading_x, unloading_y)))
if distance(closest_center, (unloading_x, unloading_y)) <= 10:
unloading_points.append((unloading_x, unloading_y))
break
return centers + unloading_points
def distance(point1, point2):
x1, y1 = point1
x2, y2 = point2
return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
def generate_order(coordinates, DC,m):#DC为配送中心的数量,m为订单生成的最大数量
demand = [0] * DC
time = [0] * DC
customers = coordinates[:DC]
for i in range (DC-1,len(coordinates)):
first = random.randint(0, m)
if first > 0:
customers.append(coordinates[i])
demand.append(m)
time.append(30)
if m-first > 0:
second = random.randint(0, m-first)
if second > 0:
customers.append(coordinates[i])
demand.append(m)
time.append(90)
if m-first-second > 0:
third = random.randint(0, m-first-second)
if third > 0:
customers.append(coordinates[i])
demand.append(m)
time.append(180)
return customers,time,demand
def calDistance(PointCoordinates):
# 计算距离矩阵 输入坐标;输出距离矩阵dis_matrix
dis_matrix = pd.DataFrame(data=None, columns=range(len(PointCoordinates)), index=range(len(PointCoordinates)))
for i in range(len(PointCoordinates)):
xi, yi = PointCoordinates[i][0], PointCoordinates[i][1]
for j in range(len(PointCoordinates)):
xj, yj = PointCoordinates[j][0], PointCoordinates[j][1]
dis_matrix.iloc[i, j] = round(math.sqrt((xi - xj) ** 2 + (yi - yj) ** 2), 2)
return dis_matrix
def assign_distribution_center(dis_matrix, DC, C):
d = [[] for i in range(DC)] # 存储分配的列表
for i in range(DC, DC + C):
d_i = [dis_matrix.loc[i, j] for j in range(DC)] # 取出当前卸货点分别距离配送中心的距离
min_dis_index = d_i.index(min(d_i)) # 取出最近的配送中心
d[min_dis_index].append(i) # 将卸货点点分配给配送中心
return d
def greedy(PointCoordinates, dis_matrix, certer_number):
dis_matrix = dis_matrix.iloc[[certer_number] + PointCoordinates, [certer_number] + PointCoordinates].astype(
'float64') # 只取当前需要的配送中心和卸货点
for i in PointCoordinates: dis_matrix.loc[i, i] = math.pow(10, 10)
dis_matrix.loc[:, certer_number] = math.pow(10, 10) # 确保配送中心不在编码内
line = [] # 初始化
now_cus = random.sample(PointCoordinates, 1)[0] # 随机生成出发点
line.append(now_cus) # 添加当前卸货点到路径
dis_matrix.loc[:, now_cus] = math.pow(10, 10) # 更新距离矩阵,已经过卸货点不再被取出
for i in range(1, len(PointCoordinates)):
next_cus = dis_matrix.loc[now_cus, :].idxmin() # 距离最近的卸货点
line.append(next_cus) # 添加进路径
dis_matrix.loc[:, next_cus] = math.pow(10, 10) # 更新距离矩阵
now_cus = next_cus # 更新当前卸货点
return line
def calFitness(birdPop, certer_number, Demand, dis_matrix, CAPACITY, DISTABCE, C0, C1, C2, time, V):
birdPop_car, fits = [], [] # 初始化
for j in range(len(birdPop)):
bird = birdPop[j]
lines = [] # 存储线路
line = [certer_number] # 每辆无人机配送卸货点,起点是配送中心
dis_sum = 0 # 线路距离
dis, d = 0, 0 # 当前卸货点距离前一个卸货点的距离、当前卸货点需求量
i = 0 # 指向配送中心
time_point = 0 #
late = 0 # 迟到时间
while i < len(bird):
if line == [certer_number]: # 无人机未分配客户点
dis += dis_matrix.loc[certer_number, bird[i]] # 记录距离
line.append(bird[i]) # 为卸货点分配无人机
d += Demand[bird[i]] # 记录需求量
time_point += dis_matrix.loc[0, bird[i]] / V
if time_point > time[bird[i]]:
late = time_point - time[bird[i]]
i += 1 # 指向下一个卸货点
else: # 已分配卸货点则需判断无人机载重和飞行距离
if (dis_matrix.loc[line[-1], bird[i]] + dis_matrix.loc[bird[i], certer_number] + dis <= DISTABCE) & (
d + Demand[bird[i]] <= CAPACITY):
dis += dis_matrix.loc[line[-1], bird[i]]
time_point += dis_matrix.loc[line[-1], bird[i]] / V
if time_point > time[bird[i]]:
late = time_point - time[bird[i]]
line.append(bird[i])
d += Demand[bird[i]]
i += 1
else:
dis += dis_matrix.loc[line[-1], certer_number] # 当前无人机装满
line.append(certer_number)
dis_sum += dis
lines.append(line)
# 下一辆无人机
dis, d = 0, 0
line = [certer_number]
time_point = 0
# 最后一辆无人机
dis += dis_matrix.loc[line[-1], certer_number]
line.append(certer_number)
dis_sum += dis
lines.append(line)
birdPop_car.append(lines)
fits.append(round(C1 * dis_sum + C0 * len(lines) + C2 * late, 1))
return birdPop_car, fits, dis_sum
def crossover(bird, pLine, gLine, w, c1, c2):
croBird = [None] * len(bird) # 初始化
parent1 = bird # 选择parent1
# 选择parent2(轮盘赌操作)
randNum = random.uniform(0, sum([w, c1, c2]))
if randNum <= w:
parent2 = [bird[i] for i in range(len(bird) - 1, -1, -1)] # bird的逆序
elif randNum <= w + c1:
parent2 = pLine
else:
parent2 = gLine
# parent1-> croBird
start_pos = random.randint(0, len(parent1) - 1)
end_pos = random.randint(0, len(parent1) - 1)
if start_pos > end_pos: start_pos, end_pos = end_pos, start_pos
croBird[start_pos:end_pos + 1] = parent1[start_pos:end_pos + 1].copy()
# parent2 -> croBird
list2 = list(range(0, start_pos))
list1 = list(range(end_pos + 1, len(parent2)))
list_index = list1 + list2 # croBird从后往前填充
j = -1
for i in list_index:
for j in range(j + 1, len(parent2) + 1):
if parent2[j] not in croBird:
croBird[i] = parent2[j]
break
return croBird
if __name__ == '__main__':
total_dis = 0
# 无人机参数
CAPACITY = 100 # 无人机最大容量
DISTABCE = 20 # 无人机最大行驶距离
C0 = 5 # 无人机启动惩成本
C1 = 1 #无人机单位距离的飞行成本
C2 = 10 #无人机晚于配送时间的单位时间惩罚成本
V = 60 # 无人机的速度
# 其他参数
bestfit = [] # 记录每代最优值
DC = 6 # 配送中心个数
C = 100 # 卸货点数量
time_total = 0
m = 10 #每个卸货点单次生成的订单量的最大值
t = 180 # 生成订单的时间间隔
customer = generate_coordinates(DC, C)
print("配送中心:",customer[:DC])
print("卸货点:",customer[DC:])
while time_total <= 1440:
birdNum = 40 # 粒子数量
w = 0.2 # 惯性因子
c1 = 0.4 # 自我认知因子
c2 = 0.4 # 社会认知因子
pBest, pLine = 0, [] # 当前最优值、当前最优解,(自我认知部分)
gBest, gLine = 0, [] # 全局最优值、全局最优解,(社会认知部分)
# 其他参数
iterMax = 1000 # 迭代次数
Customer, time, Demand = generate_order(customer,DC,m)
dis_matrix = calDistance(Customer) # 计算城市间距离
# 分配卸货点到配送中心
distribution_centers = assign_distribution_center(dis_matrix, DC, C)
bestfit_list, gLine_list = [], []
for certer_number in range(len(distribution_centers)):
distribution_center = distribution_centers[certer_number]
birdPop = [greedy(distribution_center, dis_matrix, certer_number) for i in range(birdNum)] # 贪婪算法构造初始解
birdPop_car, fits, dis_sum = calFitness(birdPop, certer_number, Demand, dis_matrix, CAPACITY, DISTABCE, C0, C1,C2,
time,V) # 分配无人机,计算种群适应度
gBest = pBest = min(fits) # 全局最优值、当前最优值
gLine = pLine = birdPop[fits.index(min(fits))] # 全局最优解、当前最优解
gLine_car = pLine_car = birdPop_car[fits.index(min(fits))]
iterI = 0 # 当前迭代次数
while iterI <= iterMax: # 迭代开始
for i in range(birdNum):
birdPop[i] = crossover(birdPop[i], pLine, gLine, w, c1, c2)
birdPop_car, fits,dis_sum = calFitness(birdPop, certer_number, Demand, dis_matrix, CAPACITY, DISTABCE, C0,
C1,C2,time,V) # 分配无人机,计算种群适应度
pBest, pLine, pLine_car = min(fits), birdPop[fits.index(min(fits))], birdPop_car[fits.index(min(fits))]
if min(fits) <= gBest:
gBest, gLine, gLine_car = min(fits), birdPop[fits.index(min(fits))], birdPop_car[fits.index(min(fits))]
iterI += 1
bestfit_list.append(gBest)
gLine_list.append(gLine_car)
print(gLine_list) # 路径顺序
for i in range(len(gLine_list)):
print("第",i,"配送中心出动",len(gLine_list[i]))
print("最优值:", sum(bestfit_list))
total_dis += sum(bestfit_list)
time_total += t
print("总最优值",total_dis)