-
Notifications
You must be signed in to change notification settings - Fork 149
/
main.py
155 lines (146 loc) · 5.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from PIL import Image, ImageDraw
from collections import Counter
import heapq
import sys
MODE_RECTANGLE = 1
MODE_ELLIPSE = 2
MODE_ROUNDED_RECTANGLE = 3
MODE = MODE_RECTANGLE
ITERATIONS = 1024
LEAF_SIZE = 4
PADDING = 1
FILL_COLOR = (0, 0, 0)
SAVE_FRAMES = False
ERROR_RATE = 0.5
AREA_POWER = 0.25
OUTPUT_SCALE = 1
def weighted_average(hist):
total = sum(hist)
value = sum(i * x for i, x in enumerate(hist)) / total
error = sum(x * (value - i) ** 2 for i, x in enumerate(hist)) / total
error = error ** 0.5
return value, error
def color_from_histogram(hist):
r, re = weighted_average(hist[:256])
g, ge = weighted_average(hist[256:512])
b, be = weighted_average(hist[512:768])
e = re * 0.2989 + ge * 0.5870 + be * 0.1140
return (r, g, b), e
def rounded_rectangle(draw, box, radius, color):
l, t, r, b = box
d = radius * 2
draw.ellipse((l, t, l + d, t + d), color)
draw.ellipse((r - d, t, r, t + d), color)
draw.ellipse((l, b - d, l + d, b), color)
draw.ellipse((r - d, b - d, r, b), color)
d = radius
draw.rectangle((l, t + d, r, b - d), color)
draw.rectangle((l + d, t, r - d, b), color)
class Quad(object):
def __init__(self, model, box, depth):
self.model = model
self.box = box
self.depth = depth
hist = self.model.im.crop(self.box).histogram()
self.color, self.error = color_from_histogram(hist)
self.leaf = self.is_leaf()
self.area = self.compute_area()
self.children = []
def is_leaf(self):
l, t, r, b = self.box
return int(r - l <= LEAF_SIZE or b - t <= LEAF_SIZE)
def compute_area(self):
l, t, r, b = self.box
return (r - l) * (b - t)
def split(self):
l, t, r, b = self.box
lr = l + (r - l) / 2
tb = t + (b - t) / 2
depth = self.depth + 1
tl = Quad(self.model, (l, t, lr, tb), depth)
tr = Quad(self.model, (lr, t, r, tb), depth)
bl = Quad(self.model, (l, tb, lr, b), depth)
br = Quad(self.model, (lr, tb, r, b), depth)
self.children = (tl, tr, bl, br)
return self.children
def get_leaf_nodes(self, max_depth=None):
if not self.children:
return [self]
if max_depth is not None and self.depth >= max_depth:
return [self]
result = []
for child in self.children:
result.extend(child.get_leaf_nodes(max_depth))
return result
class Model(object):
def __init__(self, path):
self.im = Image.open(path).convert('RGB')
self.width, self.height = self.im.size
self.heap = []
self.root = Quad(self, (0, 0, self.width, self.height), 0)
self.error_sum = self.root.error * self.root.area
self.push(self.root)
@property
def quads(self):
return [x[-1] for x in self.heap]
def average_error(self):
return self.error_sum / (self.width * self.height)
def push(self, quad):
score = -quad.error * (quad.area ** AREA_POWER)
heapq.heappush(self.heap, (quad.leaf, score, quad))
def pop(self):
return heapq.heappop(self.heap)[-1]
def split(self):
quad = self.pop()
self.error_sum -= quad.error * quad.area
children = quad.split()
for child in children:
self.push(child)
self.error_sum += child.error * child.area
def render(self, path, max_depth=None):
m = OUTPUT_SCALE
dx, dy = (PADDING, PADDING)
im = Image.new('RGB', (self.width * m + dx, self.height * m + dy))
draw = ImageDraw.Draw(im)
draw.rectangle((0, 0, self.width * m, self.height * m), FILL_COLOR)
for quad in self.root.get_leaf_nodes(max_depth):
l, t, r, b = quad.box
box = (l * m + dx, t * m + dy, r * m - 1, b * m - 1)
if MODE == MODE_ELLIPSE:
draw.ellipse(box, quad.color)
elif MODE == MODE_ROUNDED_RECTANGLE:
radius = m * min((r - l), (b - t)) / 4
rounded_rectangle(draw, box, radius, quad.color)
else:
draw.rectangle(box, quad.color)
del draw
im.save(path, 'PNG')
def main():
args = sys.argv[1:]
if len(args) != 1:
print 'Usage: python main.py input_image'
return
model = Model(args[0])
previous = None
for i in range(ITERATIONS):
error = model.average_error()
if previous is None or previous - error > ERROR_RATE:
print i, error
if SAVE_FRAMES:
model.render('frames/%06d.png' % i)
previous = error
model.split()
model.render('output.png')
print '-' * 32
depth = Counter(x.depth for x in model.quads)
for key in sorted(depth):
value = depth[key]
n = 4 ** key
pct = 100.0 * value / n
print '%3d %8d %8d %8.2f%%' % (key, n, value, pct)
print '-' * 32
print ' %8d %8.2f%%' % (len(model.quads), 100)
# for max_depth in range(max(depth.keys()) + 1):
# model.render('out%d.png' % max_depth, max_depth)
if __name__ == '__main__':
main()