-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
nexmark benchmark: local execution - query 6 (#237)
- Loading branch information
Showing
2 changed files
with
159 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -18,5 +18,6 @@ mod q1; | |
mod q3; | ||
mod q4; | ||
mod q5; | ||
mod q6; | ||
mod q7; | ||
mod q8; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
// Copyright 2021 UMD Database Group. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#[allow(dead_code)] | ||
fn main() {} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::datasource::nexmark::event::{Auction, Bid, Date, Person}; | ||
use crate::datasource::nexmark::{NexMarkEvents, NexMarkSource}; | ||
use crate::error::Result; | ||
use crate::executor::plan::physical_plan; | ||
use crate::query::StreamWindow; | ||
use arrow::array::UInt64Array; | ||
use arrow::json; | ||
use arrow::record_batch::RecordBatch; | ||
use datafusion::datasource::MemTable; | ||
use datafusion::physical_plan::expressions::Column; | ||
use datafusion::physical_plan::limit::truncate_batch; | ||
use datafusion::physical_plan::memory::MemoryExec; | ||
use datafusion::physical_plan::repartition::RepartitionExec; | ||
use datafusion::physical_plan::{collect, collect_partitioned}; | ||
use datafusion::physical_plan::{ExecutionPlan, Partitioning}; | ||
use futures::stream::StreamExt; | ||
use std::io::BufReader; | ||
use std::io::Write; | ||
use std::sync::Arc; | ||
|
||
async fn repartition( | ||
input_partitions: Vec<Vec<RecordBatch>>, | ||
partitioning: Partitioning, | ||
) -> Result<Vec<Vec<RecordBatch>>> { | ||
// create physical plan | ||
let exec = MemoryExec::try_new(&input_partitions, input_partitions[0][0].schema(), None)?; | ||
let exec = RepartitionExec::try_new(Arc::new(exec), partitioning)?; | ||
|
||
// execute and collect results | ||
let mut output_partitions = vec![]; | ||
for i in 0..exec.partitioning().partition_count() { | ||
// execute this *output* partition and collect all batches | ||
let mut stream = exec.execute(i).await?; | ||
let mut batches = vec![]; | ||
while let Some(result) = stream.next().await { | ||
batches.push(result?); | ||
} | ||
output_partitions.push(batches); | ||
} | ||
Ok(output_partitions) | ||
} | ||
|
||
#[tokio::test] | ||
async fn local_query_6() -> Result<()> { | ||
// benchmark configuration | ||
let seconds = 2; | ||
let threads = 1; | ||
let event_per_second = 1000; | ||
let nex = NexMarkSource::new(seconds, threads, event_per_second, StreamWindow::None); | ||
|
||
// data source generation | ||
let events = nex.generate_data()?; | ||
|
||
let sql1 = concat!( | ||
"SELECT COUNT(DISTINCT seller) ", | ||
"FROM auction INNER JOIN bid ON a_id = auction ", | ||
"WHERE b_date_time between a_date_time and expires ", | ||
); | ||
|
||
let sql2 = concat!( | ||
"SELECT seller, MAX(price) AS final ", | ||
"FROM auction INNER JOIN bid ON a_id = auction ", | ||
"WHERE b_date_time between a_date_time and expires ", | ||
"GROUP BY a_id, seller ORDER by seller;" | ||
); | ||
|
||
let sql3 = "SELECT seller, AVG(final) FROM Q GROUP BY seller;"; | ||
|
||
let auction_schema = Arc::new(Auction::schema()); | ||
let bid_schema = Arc::new(Bid::schema()); | ||
|
||
// sequential processing | ||
for i in 0..seconds { | ||
// events to record batches | ||
let am = events.auctions.get(&Date::new(i)).unwrap(); | ||
let (auctions, _) = am.get(&0).unwrap(); | ||
let auctions_batches = NexMarkSource::to_batch(&auctions, auction_schema.clone()); | ||
|
||
let bm = events.bids.get(&Date::new(i)).unwrap(); | ||
let (bids, _) = bm.get(&0).unwrap(); | ||
let bids_batches = NexMarkSource::to_batch(&bids, bid_schema.clone()); | ||
|
||
// register memory tables | ||
let mut ctx = datafusion::execution::context::ExecutionContext::new(); | ||
let auction_table = MemTable::try_new(auction_schema.clone(), vec![auctions_batches])?; | ||
ctx.register_table("auction", Arc::new(auction_table)); | ||
|
||
let bid_table = MemTable::try_new(bid_schema.clone(), vec![bids_batches])?; | ||
ctx.register_table("bid", Arc::new(bid_table)); | ||
|
||
// optimize query plan and execute it | ||
|
||
// 1. get the total distinct sellers during the epoch | ||
let plan = physical_plan(&mut ctx, &sql1)?; | ||
let batches = collect(plan).await?; | ||
let total_distinct_sellers = batches[0] | ||
.column(0) | ||
.as_any() | ||
.downcast_ref::<UInt64Array>() | ||
.unwrap() | ||
.value(0); | ||
|
||
// 2. get the max price of auctions for each seller | ||
let plan = physical_plan(&mut ctx, &sql2)?; | ||
let batches = collect_partitioned(plan).await?; | ||
let batches = repartition( | ||
batches, | ||
Partitioning::HashDiff( | ||
vec![Arc::new(Column::new(&"seller"))], | ||
total_distinct_sellers as usize, | ||
), | ||
) | ||
.await?; | ||
|
||
// 3. simulate `Partition By 10 recent rows for each seller` | ||
let output_partitions = batches | ||
.iter() | ||
.map(|v| { | ||
assert_eq!(v.len(), 1); | ||
truncate_batch(&v[0], 10) | ||
}) | ||
.collect::<Vec<RecordBatch>>(); | ||
|
||
// 4. the average selling price per seller for their last 10 closed auctions. | ||
let q_table = | ||
MemTable::try_new(output_partitions[0].schema(), vec![output_partitions])?; | ||
ctx.register_table("Q", Arc::new(q_table)); | ||
let plan = physical_plan(&mut ctx, &sql3)?; | ||
let output_partitions = collect(plan).await?; | ||
|
||
// show output | ||
let formatted = arrow::util::pretty::pretty_format_batches(&output_partitions).unwrap(); | ||
println!("{}", formatted); | ||
} | ||
|
||
Ok(()) | ||
} | ||
} |