Skip to content

Simple interface for Recommendation Systems implemented with Neural Networks

License

Notifications You must be signed in to change notification settings

fleanend/NeuralRecommender

Repository files navigation

NeuralRecommender

PyPI

NeuralRecommender is a PyTorch implementation of a number of recommendation algorithms using neural networks.

As of now it implements:

Installation

Install from pip:

pip install neuralrecommender

Quickstart

Fitting a model on the MovieLens 100k dataset:

import numpy as np
import ml_metrics
from neuralrecommender.glocalk import GlocalK

# Load the MovieLens 100k dataset.
def load_data_100k(): 
... # code in example notebook
return 
n_m, n_u, train_r, train_m, test_r, test_m = load_data_100k()

# Instantiate and train the model
recommender = GlocalK()
metrics = recommender.fit(train_r)

# Recommend for all users
res = recommender.predict(np.arange(n_u))

# Evaluate the recommendations
k=50
ground_truth = np.argsort(-test_r, axis=0)[:k,:].T.tolist()
recommended = np.argsort(-res, axis=0)[:k,:].T.tolist()
random = np.random.randint(0,n_m,(n_u, k)).T.tolist()

ml_metrics.mapk(ground_truth, random, k=k)
ml_metrics.mapk(ground_truth, recommended, k=k)

References

  1. GLocal-K: Global and Local Kernels for Recommender Systems
  2. GLocal-K official implementation
  3. Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis), 5(4), 1-19.

About

Simple interface for Recommendation Systems implemented with Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published