-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbm.py
86 lines (81 loc) · 3.28 KB
/
bm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""
******************************
Notes:
The current BRL repo uses the older version of the PYSKL code.
However, the K400 config needs to be run under the latest version of PYSKL.
You could refer to my new repo ProtoGCN to adapt it for a better performance.
code: https://github.com/firework8/ProtoGCN
******************************
"""
modality = 'bm'
graph = 'coco'
work_dir = f'./work_dirs/strong_aug_k400_hrnet/{modality}'
model = dict(
type='MixRecognizerGCN',
backbone=dict(
type='STGCN',
gcn_adaptive='init',
gcn_with_res=True,
tcn_type='mstcn',
graph_cfg=dict(layout=graph, mode='spatial')),
cls_head=dict(type='MixKAAHead', num_classes=400, in_channels=256))
memcached = True
mc_cfg = ('localhost', 22077)
dataset_type = 'PoseDataset'
ann_file = '/data/lhd/pyskl_data/k400/k400_hrnet.pkl'
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
box_thr = 0.5
valid_ratio = 0.0
train_pipeline = [
dict(type='DecompressPose', squeeze=True),
dict(type='UniformSampleFrames', clip_len=100),
dict(type='PoseDecode'),
dict(type='Flip', flip_ratio=0.5, left_kp=left_kp, right_kp=right_kp),
dict(type='GenSkeFeat', dataset='coco', feats=[modality]),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
val_pipeline = [
dict(type='DecompressPose', squeeze=True),
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
dict(type='PoseDecode'),
dict(type='GenSkeFeat', dataset='coco', feats=[modality]),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
test_pipeline = [
dict(type='DecompressPose', squeeze=True),
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
dict(type='PoseDecode'),
dict(type='GenSkeFeat', dataset='coco', feats=[modality]),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
data = dict(
videos_per_gpu=64,
workers_per_gpu=16,
test_dataloader=dict(videos_per_gpu=1),
train=dict(
type=dataset_type, ann_file=ann_file, split='train', pipeline=train_pipeline,
box_thr=box_thr, valid_ratio=valid_ratio, memcached=memcached, mc_cfg=mc_cfg),
val=dict(
type=dataset_type, ann_file=ann_file, split='val', pipeline=val_pipeline,
box_thr=box_thr, memcached=memcached, mc_cfg=mc_cfg),
test=dict(
type=dataset_type, ann_file=ann_file, split='val', pipeline=test_pipeline,
box_thr=box_thr, memcached=memcached, mc_cfg=mc_cfg))
# optimizer, 4GPU lr=0.1
# optimizer 128@0.1; 16-> 0.0125 ; 32-> 0.025 ; 64-> 0.05
# optimizer 128@0.2; 16-> 0.025 ; 32-> 0.05 ; 64-> 0.1
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
total_epochs = 150
checkpoint_config = dict(interval=1)
evaluation = dict(interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])