-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
56 lines (49 loc) · 2.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch
from dataloader.link_pre_dataloader import LinkPredictionDataloader
from models.LinkPreTask import LinkPredictionTask
import pytorch_lightning as pl
import yaml
import argparse
def get_trainer_model_dataloader_from_yaml(yaml_path):
with open(yaml_path) as f:
settings = dict(yaml.load(f,yaml.FullLoader))
dl = LinkPredictionDataloader(**settings['data'])
model = LinkPredictionTask(dl.edge_index,dl.edge_type,dl.feature_data,dl.N, **settings['model'])
checkpoint_callback = pl.callbacks.ModelCheckpoint(**settings['callback'])
trainer = pl.Trainer(callbacks=[checkpoint_callback], **settings['train'])
return trainer,model,dl
def train(parser):
# dl=NSDataloader(batch_size=512*32)
# model = M2GCNModel(N=dl.num_nodes,adj_list=dl.adj_list,lam=0.5)
# checkpoint_callback = pl.callbacks.ModelCheckpoint(monitor='auc',mode='max')
# trainer = pl.Trainer(max_epochs=10,callbacks=[checkpoint_callback],gpus=1,reload_dataloaders_every_n_epochs=1)
# trainer.fit(model,dl)
args = parser.parse_args()
setting_path = args.setting_path
trainer,model,dl = get_trainer_model_dataloader_from_yaml(setting_path)
trainer.fit(model,dl)
# 测试
# 加载参数
ckpt_path = trainer.log_dir + '/checkpoints/' + os.listdir(trainer.log_dir + '/checkpoints')[0]
state_dict = torch.load(ckpt_path)['state_dict']
model.load_state_dict(state_dict)
trainer.test(model, dl.test_dataloader())
def test(parser):
parser.add_argument('--ckpt_path',type=str,help='model checkpoint path')
args = parser.parse_args()
setting_path = args.setting_path
trainer, model, dl = get_trainer_model_dataloader_from_yaml(setting_path)
# 加载参数
state_dict=torch.load(args.ckpt_path)['state_dict']
model.load_state_dict(state_dict)
trainer.test(model,dl.test_dataloader())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--setting_path',type=str,default='settings/ama_settings.yaml')
parser.add_argument("--test", action='store_true', help='test or train')
temp_args, _ = parser.parse_known_args()
if temp_args.test:
test(parser)
else:
train(parser)