-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added DynDE algorithm from Mendes and Mohais, 2005.
--HG-- branch : dev
- Loading branch information
Showing
1 changed file
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
# This file is part of DEAP. | ||
# | ||
# DEAP is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as | ||
# published by the Free Software Foundation, either version 3 of | ||
# the License, or (at your option) any later version. | ||
# | ||
# DEAP is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public | ||
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
"""Implementation of the Dynamic Differential Evolution algorithm as presented | ||
in *Mendes and Mohais, 2005, DynDE: A Differential Evolution for Dynamic | ||
Optimization Problems.* | ||
""" | ||
|
||
import array | ||
import itertools | ||
import math | ||
import operator | ||
import random | ||
|
||
from deap import base | ||
from deap.benchmarks import movingpeaks | ||
from deap import creator | ||
from deap import tools | ||
|
||
scenario = movingpeaks.SCENARIO_2 | ||
|
||
NDIM = 5 | ||
BOUNDS = [scenario["min_coord"], scenario["max_coord"]] | ||
|
||
def brown_ind(iclass, best, sigma): | ||
return iclass(random.gauss(x, sigma) for x in best) | ||
|
||
mpb = movingpeaks.MovingPeaks(dim=NDIM, **scenario) | ||
|
||
creator.create("FitnessMax", base.Fitness, weights=(1.0,)) | ||
creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMax) | ||
|
||
toolbox = base.Toolbox() | ||
toolbox.register("attr_float", random.uniform, BOUNDS[0], BOUNDS[1]) | ||
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, NDIM) | ||
toolbox.register("brownian_individual", brown_ind, creator.Individual, sigma=0.3) | ||
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | ||
toolbox.register("select", random.sample, k=4) | ||
toolbox.register("best", tools.selBest, k=1) | ||
toolbox.register("evaluate", mpb) | ||
|
||
def main(verbose=True): | ||
NPOP = 20 | ||
CR = 0.6 | ||
F = 0.4 | ||
regular, brownian = 4, 2 | ||
|
||
# Initialize populations | ||
populations = [toolbox.population(n=regular + brownian) for _ in range(NPOP)] | ||
stats = tools.Statistics(lambda ind: ind.fitness.values) | ||
stats.register("avg", tools.mean) | ||
stats.register("std", tools.std) | ||
stats.register("min", min) | ||
stats.register("max", max) | ||
|
||
if verbose: | ||
logger = tools.EvolutionLogger(["gen", "evals", "error", "offline_error"] + stats.functions.keys()) | ||
logger.logHeader() | ||
|
||
# Evaluate the individuals | ||
for idx, subpop in enumerate(populations): | ||
fitnesses = toolbox.map(toolbox.evaluate, subpop) | ||
for ind, fit in zip(subpop, fitnesses): | ||
ind.fitness.values = fit | ||
|
||
stats.update(itertools.chain(*populations)) | ||
if verbose: | ||
logger.logGeneration(gen=0, evals=mpb.nevals, error=mpb.currentError(), offline_error=mpb.offlineError(), stats=stats) | ||
|
||
g = 1 | ||
while mpb.nevals < 5e5: | ||
# Detect a change and invalidate fitnesses if necessary | ||
bests = [toolbox.best(subpop)[0] for subpop in populations] | ||
if any(b.fitness.values != toolbox.evaluate(b) for b in bests): | ||
for individual in itertools.chain(*populations): | ||
del individual.fitness.values | ||
|
||
# Apply exclusion | ||
rexcl = (BOUNDS[1] - BOUNDS[0]) / (2 * NPOP**(1.0/NDIM)) | ||
for i, j in itertools.combinations(range(NPOP), 2): | ||
if bests[i].fitness.valid and bests[j].fitness.valid: | ||
d = sum((bests[i][k] - bests[j][k])**2 for k in range(NDIM)) | ||
d = math.sqrt(d) | ||
|
||
if d < rexcl: | ||
if bests[i].fitness < bests[j].fitness: | ||
k = i | ||
else: | ||
k = j | ||
|
||
populations[k] = toolbox.population(n=regular + brownian) | ||
|
||
# Evaluate the individuals with an invalid fitness | ||
invalid_ind = [ind for ind in itertools.chain(*populations) if not ind.fitness.valid] | ||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | ||
for ind, fit in zip(invalid_ind, fitnesses): | ||
ind.fitness.values = fit | ||
|
||
stats.update(itertools.chain(*populations)) | ||
if verbose: | ||
logger.logGeneration(gen=g, evals=mpb.nevals, error=mpb.currentError(), offline_error=mpb.offlineError(), stats=stats) | ||
|
||
# Evolve the sub-populations | ||
for idx, subpop in enumerate(populations): | ||
newpop = [] | ||
xbest, = toolbox.best(subpop) | ||
# Apply regular DE to the first part of the population | ||
for individual in subpop[:regular]: | ||
x1, x2, x3, x4 = toolbox.select(subpop) | ||
offspring = toolbox.clone(individual) | ||
index = random.randrange(NDIM) | ||
for i, value in enumerate(individual): | ||
if i == index or random.random() < CR: | ||
offspring[i] = xbest[i] + F * (x1[i] + x2[i] - x3[i] - x4[i]) | ||
offspring.fitness.values = toolbox.evaluate(offspring) | ||
if offspring.fitness >= individual.fitness: | ||
newpop.append(offspring) | ||
else: | ||
newpop.append(individual) | ||
|
||
# Apply Brownian to the last part of the population | ||
newpop.extend(toolbox.brownian_individual(xbest) for _ in range(brownian)) | ||
|
||
# Replace the population | ||
populations[idx] = newpop | ||
|
||
g += 1 | ||
|
||
return stats | ||
|
||
if __name__ == "__main__": | ||
main() |