-
Notifications
You must be signed in to change notification settings - Fork 0
/
cma.py
257 lines (215 loc) · 12.2 KB
/
cma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
# Special thanks to Nikolaus Hansen for providing major part of
# this code. The CMA-ES algorithm is provided in many other languages
# and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html.
"""A module that provides support for the Covariance Matrix Adaptation
Evolution Strategy.
"""
import numpy
import copy
from math import sqrt, log, exp
class Strategy(object):
"""
A strategy that will keep track of the basic parameters of the CMA-ES
algorithm.
:param centroid: An iterable object that indicates where to start the
evolution.
:param sigma: The list of initial standard deviations of the distribution,
it shall be the same length than the centroid.
:param parameter: One or more parameter to pass to the strategy as
described in the following table, optional.
+----------------+---------------------------+----------------------------+
| Parameter | Default | Details |
+================+===========================+============================+
| ``lambda_`` | ``int(4 + 3 * log(N))`` | Number of children to |
| | | produce at each generation,|
| | | ``N`` is the individual's |
| | | size (integer). |
+----------------+---------------------------+----------------------------+
| ``mu`` | ``int(lambda_ / 2)`` | The number of parents to |
| | | keep from the |
| | | lambda children (integer). |
+----------------+---------------------------+----------------------------+
| ``weights`` | ``"superlinear"`` | Decrease speed, can be |
| | | ``"superlinear"``, |
| | | ``"linear"`` or |
| | | ``"equal"``. |
+----------------+---------------------------+----------------------------+
| ``cs`` | ``(mueff + 2) / | Cumulation constant for |
| | (N + mueff + 3)`` | step-size. |
+----------------+---------------------------+----------------------------+
| ``damps`` | ``1 + 2 * max(0, sqrt(( | Damping for step-size. |
| | mueff - 1) / (N + 1)) - 1)| |
| | + cs`` | |
+----------------+---------------------------+----------------------------+
| ``ccum`` | ``4 / (N + 4)`` | Cumulation constant for |
| | | covariance matrix. |
+----------------+---------------------------+----------------------------+
| ``ccov1`` | ``2 / ((N + 1.3)^2 + | Learning rate for rank-one |
| | mueff)`` | update. |
+----------------+---------------------------+----------------------------+
| ``ccovmu`` | ``2 * (mueff - 2 + 1 / | Learning rate for rank-mu |
| | mueff) / ((N + 2)^2 + | update. |
| | mueff)`` | |
+----------------+---------------------------+----------------------------+
"""
def __init__(self, centroid, sigma, **kargs):
self.params = kargs
# Create a centroid as a numpy array
self.centroid = numpy.array(centroid)
self.dim = len(self.centroid)
self.sigma = sigma
self.pc = numpy.zeros(self.dim)
self.ps = numpy.zeros(self.dim)
self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) + \
1. / (21. * self.dim**2))
self.B = numpy.identity(self.dim)
self.C = numpy.identity(self.dim)
self.diagD = numpy.ones(self.dim)
self.BD = self.B * self.diagD
self.cond = 1
self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim)))
self.update_count = 0
self.computeParams(self.params)
def generate(self, ind_init):
"""Generate a population from the current strategy using the
centroid individual as parent.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals.
"""
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
return map(ind_init, arz)
def update(self, population):
"""Update the current covariance matrix strategy and *population*.
:param population: A list of individuals from which to update the
parameters and where the new population will be
placed.
"""
population.sort(key=lambda ind: ind.fitness, reverse=True)
old_centroid = self.centroid
self.centroid = numpy.dot(self.weights, population[0:self.mu])
c_diff = self.centroid - old_centroid
# Cumulation : update evolution path
self.ps = (1 - self.cs) * self.ps \
+ sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \
* numpy.dot(self.B, (1. / self.diagD) \
* numpy.dot(self.B.T, c_diff))
hsig = float((numpy.linalg.norm(self.ps) /
sqrt(1. - (1. - self.cs)**(2. * (self.update_count + 1.))) / self.chiN
< (1.4 + 2. / (self.dim + 1.))))
self.update_count += 1
self.pc = (1 - self.cc) * self.pc + hsig \
* sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \
* c_diff
# Update covariance matrix
artmp = population[0:self.mu] - old_centroid
self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \
* self.ccov1 * self.cc * (2 - self.cc)) * self.C \
+ self.ccov1 * numpy.outer(self.pc, self.pc) \
+ self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \
/ self.sigma**2
self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) \
* self.cs / self.damps)
self.diagD, self.B = numpy.linalg.eigh(self.C)
indx = numpy.argsort(self.diagD)
self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]
self.diagD = self.diagD[indx]**0.5
self.B = self.B[:, indx]
self.BD = self.B * self.diagD
def computeParams(self, params):
"""Computes the parameters depending on *lambda_*. It needs to be
called again if *lambda_* changes during evolution.
:param params: A dictionary of the manually set parameters.
"""
self.mu = params.get("mu", int(self.lambda_ / 2))
rweights = params.get("weights", "superlinear")
if rweights == "superlinear":
self.weights = log(self.mu + 0.5) - \
numpy.log(numpy.arange(1, self.mu + 1))
elif rweights == "linear":
self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
elif rweights == "equal":
self.weights = numpy.ones(self.mu)
else:
raise RuntimeError("Unknown weights : %s" % rweights)
self.weights /= sum(self.weights)
self.mueff = 1. / sum(self.weights**2)
self.cc = params.get("ccum", 4. / (self.dim + 4.))
self.cs = params.get("cs", (self.mueff + 2.) /
(self.dim + self.mueff + 3.))
self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3)**2 + \
self.mueff))
self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. + \
1. / self.mueff) / \
((self.dim + 2.)**2 + self.mueff))
self.ccovmu = min(1 - self.ccov1, self.ccovmu)
self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) / \
(self.dim + 1.)) - 1.) + self.cs
self.damps = params.get("damps", self.damps)
class StrategyOnePlusLambda(object):
def __init__(self, parent, sigma, **kargs):
self.parent = parent
self.sigma = sigma
self.dim = len(self.parent)
self.C = numpy.identity(self.dim)
self.A = numpy.identity(self.dim)
self.pc = numpy.zeros(self.dim)
self.computeParams(kargs)
self.psucc = self.ptarg
def computeParams(self, params):
# Selection :
self.lambda_ = params.get("lambda_", 1)
# Step size control :
self.d = params.get("d", 1.0 + self.dim/(2.0*self.lambda_))
self.ptarg = params.get("ptarg", 1.0/(5+sqrt(self.lambda_)/2.0))
self.cp = params.get("cp", self.ptarg*self.lambda_/(2+self.ptarg*self.lambda_))
# Covariance matrix adaptation
self.cc = params.get("cc", 2.0/(self.dim+2.0))
self.ccov = params.get("ccov", 2.0/(self.dim**2 + 6.0))
self.pthresh = params.get("pthresh", 0.44)
def generate(self, ind_init):
# self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim))
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)
return map(ind_init, arz)
def update(self, population):
population.sort(key=lambda ind: ind.fitness, reverse=True)
lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population)
p_succ = float(lambda_succ) / self.lambda_
self.psucc = (1-self.cp)*self.psucc + self.cp*p_succ
if self.parent.fitness <= population[0].fitness:
x_step = (population[0] - numpy.array(self.parent)) / self.sigma
self.parent = copy.deepcopy(population[0])
if self.psucc < self.pthresh:
self.pc = (1 - self.cc)*self.pc + sqrt(self.cc * (2 - self.cc)) * x_step
self.C = (1-self.ccov)*self.C + self.ccov * numpy.dot(self.pc, self.pc.T)
else:
self.pc = (1 - self.cc)*self.pc
self.C = (1-self.ccov)*self.C + self.ccov * (numpy.dot(self.pc, self.pc.T) + self.cc*(2-self.cc)*self.C)
self.sigma = self.sigma * exp(1.0/self.d * (self.psucc - self.ptarg)/(1.0-self.ptarg))
# We use Cholesky since for now we have no use of eigen decomposition
# Basically, Cholesky returns a matrix A as C = A*A.T
# Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T
# So A == B*D
# To compute the new individual we need to multiply each vector z by A
# as y = centroid + sigma * A*z
# So the Cholesky is more straightforward as we don't need to compute
# the squareroot of D^2, and multiply B and D in order to get A, we directly get A.
# This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used
# to compute covariance matrix inverse in the step-size evolutionary path computation.
self.A = numpy.linalg.cholesky(self.C)