-
Notifications
You must be signed in to change notification settings - Fork 0
/
pso_multiswarm.py
229 lines (192 loc) · 9.16 KB
/
pso_multiswarm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""Implementation of the Multiswarm Particle Swarm Optimization algorithm as
presented in *Blackwell, Branke, and Li, 2008, Particle Swarms for Dynamic
Optimization Problems.*
"""
import itertools
import math
import operator
import random
try:
from itertools import imap
except:
# Python 3 nothing to do
pass
else:
map = imap
from deap import base
from deap.benchmarks import movingpeaks
from deap import creator
from deap import tools
scenario = movingpeaks.SCENARIO_2
NDIM = 5
BOUNDS = [scenario["min_coord"], scenario["max_coord"]]
mpb = movingpeaks.MovingPeaks(dim=NDIM, **scenario)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Particle", list, fitness=creator.FitnessMax, speed=list,
best=None, bestfit=creator.FitnessMax)
creator.create("Swarm", list, best=None, bestfit=creator.FitnessMax)
def generate(pclass, dim, pmin, pmax, smin, smax):
part = pclass(random.uniform(pmin, pmax) for _ in range(dim))
part.speed = [random.uniform(smin, smax) for _ in range(dim)]
return part
def convert_quantum(swarm, rcloud, centre):
dim = len(swarm[0])
for part in swarm:
position = [random.gauss(0, 1) for _ in range(dim)]
dist = math.sqrt(sum(x**2 for x in position))
# Gaussian distribution
# u = abs(random.gauss(0, 1.0/3.0))
# part[:] = [(rcloud * x * u**(1.0/dim) / dist) + c for x, c in zip(position, centre)]
# UVD distribution
# u = random.random()
# part[:] = [(rcloud * x * u**(1.0/dim) / dist) + c for x, c in zip(position, centre)]
# NUVD distribution
u = abs(random.gauss(0, 1.0/3.0))
part[:] = [(rcloud * x * u / dist) + c for x, c in zip(position, centre)]
del part.fitness.values
del part.bestfit.values
part.best = None
return swarm
def updateParticle(part, best, chi, c):
ce1 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce2 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce1_p = map(operator.mul, ce1, map(operator.sub, best, part))
ce2_g = map(operator.mul, ce2, map(operator.sub, part.best, part))
a = map(operator.sub,
map(operator.mul,
itertools.repeat(chi),
map(operator.add, ce1_p, ce2_g)),
map(operator.mul,
itertools.repeat(1 - chi),
part.speed))
part.speed = list(map(operator.add, part.speed, a))
part[:] = list(map(operator.add, part, part.speed))
toolbox = base.Toolbox()
toolbox.register("particle", generate, creator.Particle, dim=NDIM,
pmin=BOUNDS[0], pmax=BOUNDS[1], smin=-(BOUNDS[1] - BOUNDS[0])/2.0,
smax=(BOUNDS[1] - BOUNDS[0])/2.0)
toolbox.register("swarm", tools.initRepeat, creator.Swarm, toolbox.particle)
toolbox.register("update", updateParticle, chi=0.729843788, c=2.05)
toolbox.register("convert", convert_quantum)
toolbox.register("evaluate", mpb)
def main(verbose=True):
NSWARMS = 1
NPARTICLES = 5
NEXCESS = 3
RCLOUD = 0.5 # 0.5 times the move severity
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", tools.mean)
stats.register("std", tools.std)
stats.register("min", min)
stats.register("max", max)
# Generate the initial population
population = [toolbox.swarm(n=NPARTICLES) for _ in range(NSWARMS)]
# Evaluate each particle
for swarm in population:
for part in swarm:
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:]) # Get the position
part.bestfit.values = part.fitness.values # Get the fitness
if not swarm.best or part.fitness > swarm.bestfit:
swarm.best = toolbox.clone(part[:]) # Get the position
swarm.bestfit.values = part.fitness.values # Get the fitness
stats.update(itertools.chain(*population))
if verbose:
column_names = ["gen", "evals", "nswarm", "error", "offline_error"]
column_names.extend(stats.functions.keys())
logger = tools.EvolutionLogger(column_names)
logger.logHeader()
logger.logGeneration(gen=0, evals=mpb.nevals, nswarm=len(population), error=mpb.currentError(), offline_error=mpb.offlineError(), stats=stats)
generation = 1
while mpb.nevals < 5e5:
# Check for convergence
rexcl = (BOUNDS[1] - BOUNDS[0]) / (2 * len(population)**(1.0/NDIM))
not_converged = 0
worst_swarm_idx = None
worst_swarm = None
for i, swarm in enumerate(population):
# Compute the diameter of the swarm
for p1, p2 in itertools.combinations(swarm, 2):
d = math.sqrt(sum((x1 - x2)**2. for x1, x2 in zip(p1, p2)))
if d > 2*rexcl:
not_converged += 1
# Search for the worst swarm according to its global best
if not worst_swarm or swarm.bestfit < worst_swarm.bestfit:
worst_swarm_idx = i
worst_swarm = swarm
break
# If all swarms have converged, add a swarm
if not_converged == 0:
population.append(toolbox.swarm(n=NPARTICLES))
# If too many swarms are roaming, remove the worst swarm
elif not_converged > NEXCESS:
population.pop(worst_swarm_idx)
# Update and evaluate the swarm
for swarm in population:
# Check for change
if swarm.best and toolbox.evaluate(swarm.best) != swarm.bestfit.values:
# Convert particles to quantum particles
swarm[:] = toolbox.convert(swarm, rcloud=RCLOUD, centre=swarm.best)
swarm.best = None
del swarm.bestfit.values
for part in swarm:
# Not necessary to update if it is a new swarm
# or a swarm just converted to quantum
if swarm.best and part.best:
toolbox.update(part, swarm.best)
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:])
part.bestfit.values = part.fitness.values
if not swarm.best or part.fitness > swarm.bestfit:
swarm.best = toolbox.clone(part[:])
swarm.bestfit.values = part.fitness.values
stats.update(itertools.chain(*population))
if verbose:
logger.logGeneration(gen=generation, evals=mpb.nevals, nswarm=len(population), error=mpb.currentError(), offline_error=mpb.offlineError(), stats=stats)
# Apply exclusion
reinit_swarms = set()
for s1, s2 in itertools.combinations(range(len(population)), 2):
# Swarms must have a best and not already be set to reinitialize
if population[s1].best and population[s2].best and not (s1 in reinit_swarms or s2 in reinit_swarms):
dist = 0
for x1, x2 in zip(population[s1].best, population[s2].best):
dist += (x1 - x2)**2.
dist = math.sqrt(dist)
if dist < rexcl:
if population[s1].bestfit <= population[s2].bestfit:
reinit_swarms.add(s1)
else:
reinit_swarms.add(s2)
# Reinitialize and evaluate swarms
for s in reinit_swarms:
population[s] = toolbox.swarm(n=NPARTICLES)
for part in population[s]:
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:])
part.bestfit.values = part.fitness.values
if not population[s].best or part.fitness > population[s].bestfit:
population[s].best = toolbox.clone(part[:])
population[s].bestfit.values = part.fitness.values
generation += 1
if __name__ == "__main__":
main()