This repository has been archived by the owner on Jun 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 38
/
conv_split_cub_hybrid.py
904 lines (795 loc) · 46.1 KB
/
conv_split_cub_hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split CUB experiment with zero shot transfer.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_cub
from utils.utils import get_sample_weights, sample_from_dataset, concatenate_datasets, update_episodic_memory_with_less_data, samples_for_each_class, sample_from_dataset_icarl, load_task_specific_data
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B']
ARCH = 'RESNET-B'
PRETRAIN = True
## Model options
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models
IMP_METHOD = 'EWC'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 5 # Number of samples per task
IMG_HEIGHT = 224
IMG_WIDTH = 224
IMG_CHANNELS = 3
TOTAL_CLASSES = 200 # Total number of classes in the dataset
EPS_MEM_BATCH_SIZE = 128
DEBUG_EPISODIC_MEMORY = False
KEEP_EPISODIC_MEMORY_FULL = False
K_FOR_CROSS_VAL = 3
## Logging, saving and testing options
LOG_DIR = './split_cub_results'
SNAPSHOT_DIR = './cub_snapshots'
SAVE_MODEL_PARAMS = False
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
## Dataset specific options
ATTR_DIMS = 312
DATA_DIR='CUB_data/CUB_200_2011/images'
#CUB_TRAIN_LIST = 'dataset_lists/tmp_list.txt'
#CUB_TEST_LIST = 'dataset_lists/tmp_list.txt'
CUB_TRAIN_LIST = 'dataset_lists/CUB_train_list.txt'
CUB_TEST_LIST = 'dataset_lists/CUB_test_list.txt'
CUB_ATTR_LIST = 'dataset_lists/CUB_attr_in_order.pickle'
RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt'
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split CUB hybrid experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--set-hybrid", action="store_true",
help="If option is chosen then train using hybrid model")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the CUB data will be read.\
NOTE: Provide path till <CUB_DIR>/images")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="TF checkpoint file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF Checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, saver, datasets, class_attr, classes_per_task, cross_validate_mode, train_single_epoch, do_sampling, is_herding,
mem_per_class, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
break_training = 0
# Loop over number of runs to average over
for runid in range(num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
total_classes = classes_per_task * model.num_tasks
if online_cross_val:
label_array = np.arange(total_classes)
else:
class_label_offset = K_FOR_CROSS_VAL * classes_per_task
label_array = np.arange(class_label_offset, total_classes+class_label_offset)
np.random.shuffle(label_array)
for tt in range(model.num_tasks):
tt_offset = tt*classes_per_task
task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task]))
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
# Store the task labels
task_labels_dataset.append(task_labels)
# Set episodic memory size
episodic_mem_size = mem_per_class * total_classes
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
if PRETRAIN:
# Load the variables from a checkpoint
if model.network_arch == 'RESNET-B':
# Define loader (weights which will be loaded from a checkpoint)
restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name and 'attr_embed' not in v.name]
loader = tf.train.Saver(restore_vars)
load(loader, sess, init_checkpoint)
elif model.network_arch == 'VGG':
# Load the pretrained weights from the npz file
weights = np.load(init_checkpoint)
keys = sorted(weights.keys())
for i, key in enumerate(keys[:-2]): # Load everything except the last layer
sess.run(model.trainable_vars[i].assign(weights[key]))
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
# List to store the classes that we have so far - used at test time
test_labels = []
if model.imp_method == 'S-GEM':
# List to store the episodic memories of the previous tasks
task_based_memory = []
if model.imp_method == 'A-GEM':
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES])
episodic_filled_counter = 0
a_gem_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
# Labels for all the tasks that we have seen in the past
prev_task_labels = []
prev_class_attrs = np.zeros_like(class_attr)
if do_sampling:
# List to store important samples from the previous tasks
last_task_x = None
last_task_y_ = None
# Mask for the softmax
logit_mask = np.zeros(TOTAL_CLASSES)
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0):
model.restore(sess)
# If sampling flag is set append the previous datasets
if do_sampling:
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
if task > 0:
task_train_images, task_train_labels = concatenate_datasets(task_tr_images, task_tr_labels, last_task_x, last_task_y_)
else:
task_train_images = task_tr_images
task_train_labels = task_tr_labels
else:
# Extract training images and labels for the current task
task_train_images, task_train_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
# If multi_task is set then train using all the datasets of all the tasks
if MULTI_TASK:
if task == 0:
for t_ in range(1, len(task_labels)):
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_])
task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0)
task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0)
else:
# Skip training for this task
continue
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
# Test for the tasks that we've seen so far
test_labels.extend(task_labels[task])
# Declare variables to store sample importance if sampling flag is set
if do_sampling:
# Get the sample weighting
task_sample_weights = get_sample_weights(task_train_labels, test_labels)
else:
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
# Train a task observing sequence of data
logit_mask[:] = 0
if train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
if cross_validate_mode:
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
else:
num_iters = train_iters
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
ftask = []
if MULTI_TASK:
logit_mask[:] = 1.0
masked_class_attrs = class_attr
else:
# Attribute mask
masked_class_attrs = np.zeros_like(class_attr)
if do_sampling:
masked_class_attrs[test_labels] = class_attr[test_labels]
else:
masked_class_attrs[task_labels[task]] = class_attr[task_labels[task]]
# Training loop for task T
for iters in range(num_iters):
if train_single_epoch and not cross_validate_mode and not MULTI_TASK:
#if (iters <= 50 and iters % 5 == 0) or (iters > 50 and iters % 50 == 0):
if (iters < 10) or (iters % 5 == 0):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
ftask.append(fbatch)
# Set the output labels over which the model needs to be trained
if model.imp_method == 'A-GEM':
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
else:
logit_mask[:] = 0
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
if train_single_epoch:
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual],
model.class_attr: masked_class_attrs,
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
else:
offset = (iters * batch_size) % (num_train_examples - batch_size)
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size],
model.class_attr: masked_class_attrs,
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'S-GEM':
if task == 0:
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
# Randomly sample a task from the previous tasks
prev_task = np.random.randint(0, task)
# Set the logit mask for the randomly sampled task
logit_mask[:] = 0
logit_mask[task_labels[prev_task]] = 1.0
prev_class_attrs = np.zeros_like(class_attr)
prev_class_attrs[task_labels[prev_task]] = class_attr[task_labels[prev_task]]
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'],
model.class_attr: prev_class_attrs,
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
# Compute the gradient for current task and project if need be
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Set the mask for all the previous tasks so far
a_gem_logit_mask[:] = 0
for tt in range(task):
a_gem_logit_mask[tt][task_labels[tt]] = 1.0
if KEEP_EPISODIC_MEMORY_FULL:
mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
else:
if episodic_filled_counter <= EPS_MEM_BATCH_SIZE:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.class_attr: prev_class_attrs, model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
if (iters % 50 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
break_training = 1
break
print('\t\t\t\tTraining for Task%d done!'%(task))
if model.imp_method == 'A-GEM':
# Update the previous task labels and attributes
prev_task_labels += task_labels[task]
prev_class_attrs[prev_task_labels] = class_attr[prev_task_labels]
if break_training:
break
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if task < (len(task_labels) - 1):
# TODO: For MAS, should the gradients be for current task or all the previous tasks
model.task_updates(sess, task, task_train_images, task_labels[task], num_classes_per_task=classes_per_task, class_attr=class_attr, online_cross_val=online_cross_val)
print('\t\t\t\tTask updates after Task%d done!'%(task))
# If importance method is '*-GEM' then store the episodic memory for the task
if 'GEM' in model.imp_method:
data_to_sample_from = {
'images': task_train_images,
'labels': task_train_labels,
}
if model.imp_method == 'S-GEM':
# Get the important samples from the current task
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
task_memory = {
'images': deepcopy(imp_images),
'labels': deepcopy(imp_labels),
}
task_based_memory.append(task_memory)
elif model.imp_method == 'A-GEM':
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, features, episodic_mem_size, task, episodic_images, episodic_labels, task_labels=task_labels[task], is_herding=True)
else:
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, importance_array, episodic_mem_size, task, episodic_images, episodic_labels)
else:
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if not KEEP_EPISODIC_MEMORY_FULL: # Fill the memory to always keep M/T samples per task
total_imp_samples = imp_images.shape[0]
eps_offset = task * total_imp_samples
episodic_images[eps_offset:eps_offset+total_imp_samples] = imp_images
episodic_labels[eps_offset:eps_offset+total_imp_samples] = imp_labels
episodic_filled_counter += total_imp_samples
# Inspect episodic memory
if DEBUG_EPISODIC_MEMORY:
# Which labels are present in the memory
unique_labels = np.unique(np.nonzero(episodic_labels)[-1])
print('Unique Labels present in the episodic memory'.format(unique_labels))
print('Labels count:')
for lbl in unique_labels:
print('Label {}: {} samples'.format(lbl, np.where(np.nonzero(episodic_labels)[-1] == lbl)[0].size))
# Is there any space which is not filled
print('Empty space: {}'.format(np.where(np.sum(episodic_labels, axis=1) == 0)))
print('Episodic memory of {} images at task {} saved!'.format(episodic_images.shape[0], task))
# If sampling flag is set, store few of the samples from previous task
if do_sampling:
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones([task_train_images.shape[0]], dtype=np.float32)
# Get the important samples from the current task
task_data = {
'images': task_tr_images,
'labels': task_tr_labels,
}
imp_images, imp_labels = sample_from_dataset(task_data, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if imp_images is not None:
if last_task_x is None:
last_task_x = imp_images
last_task_y_ = imp_labels
else:
last_task_x = np.concatenate((last_task_x, imp_images), axis=0)
last_task_y_ = np.concatenate((last_task_y_, imp_labels), axis=0)
# Delete the importance array now that you don't need it in the current run
del importance_array
print('\t\t\t\tEpisodic memory is saved for Task%d!'%(task))
if cross_validate_mode:
if (task == model.num_tasks - 1) or MULTI_TASK:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
elif train_single_epoch:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
print('Task: {} Acc: {}'.format(task, fbatch))
ftask.append(fbatch)
else:
# Multi-epoch training, so compute accuracy at the end
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
if SAVE_MODEL_PARAMS:
save(saver, sess, SNAPSHOT_DIR, iters)
if not cross_validate_mode:
# Store the accuracies computed at task T in a list
evals.append(np.array(ftask))
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
if not cross_validate_mode:
runs.append(np.array(evals))
if break_training:
break
# End for loop runid
if cross_validate_mode:
return np.mean(ftask)
else:
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, class_attr, num_classes_per_task, test_tasks, task):
"""
Snapshot the current performance
"""
final_acc = np.zeros(model.num_tasks)
if model.imp_method == 'A-GEM':
logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
else:
logit_mask = np.zeros(TOTAL_CLASSES)
for tt, labels in enumerate(test_tasks):
if not MULTI_TASK:
if tt > task:
return final_acc
masked_class_attrs = np.zeros_like(class_attr)
masked_class_attrs[labels] = class_attr[labels]
task_test_images, task_test_labels = load_task_specific_data(test_data, labels)
total_test_samples = task_test_images.shape[0]
samples_at_a_time = 10
total_corrects = 0
logit_mask[:] = 0
if model.imp_method == 'A-GEM':
logit_mask[tt][labels] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
else:
logit_mask[labels] = 1.0
for i in range(total_test_samples/ samples_at_a_time):
offset = i*samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+samples_at_a_time],
model.y_: task_test_labels[offset:offset+samples_at_a_time],
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Compute the corrects on residuals
offset = (i+1)*samples_at_a_time
num_residuals = total_test_samples % samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+num_residuals],
model.y_: task_test_labels[offset:offset+num_residuals],
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Mean accuracy on the task
acc = total_corrects/ float(total_test_samples)
final_acc[tt] = acc
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
# Get the task labels from the total number of tasks and full label space
classes_per_task = TOTAL_CLASSES// NUM_TASKS
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split CUB dataset
data_labs = [np.arange(TOTAL_CLASSES)]
datasets, CUB_attr = construct_split_cub(data_labs, args.data_dir, CUB_TRAIN_LIST, CUB_TEST_LIST, IMG_HEIGHT, IMG_WIDTH, attr_file=CUB_ATTR_LIST)
if args.online_cross_val:
CUB_attr[K_FOR_CROSS_VAL*classes_per_task:] = 0
else:
CUB_attr[:K_FOR_CROSS_VAL*classes_per_task] = 0
if args.cross_validate_mode:
models_list = MODELS
learning_rate_list = [0.3, 0.1, 0.01, 0.003, 0.001]
else:
models_list = [args.imp_method]
for imp_method in models_list:
if imp_method == 'VAN':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
elif imp_method == 'PI':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'EWC' or imp_method == 'M-EWC':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [10]
learning_rate_list = [0.03]
elif imp_method == 'MAS':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'RWALK':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [1]
learning_rate_list = [0.03]
elif imp_method == 'S-GEM':
synap_stgth_list = [0]
if args.online_cross_val:
pass
else:
learning_rate_list = [args.learning_rate]
elif imp_method == 'A-GEM':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
for synap_stgth in synap_stgth_list:
for lr in learning_rate_list:
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_CUB',
'HYBRID': args.set_hybrid,
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': imp_method,
'SYNAP_STGTH': synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': lr,
'BATCH_SIZE': args.batch_size,
'EPS_MEMORY': args.do_sampling,
'MEM_SIZE': args.mem_size,
'IS_HERDING': args.is_herding}
experiment_id = "SPLIT_CUB_HERDING_%r_HYB_%r_%s_%r_%s_%s_%s_%r_%s-"%(args.is_herding, args.set_hybrid, args.arch, args.train_single_epoch, imp_method,
str(synap_stgth).replace('.', '_'),
str(args.batch_size), args.do_sampling, str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(RANDOM_SEED)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])
attr = tf.placeholder(tf.float32, shape=[TOTAL_CLASSES, ATTR_DIMS])
if not args.train_single_epoch:
# Define ops for data augmentation
x_aug = image_scaling(x)
x_aug = random_crop_and_pad_image(x_aug, IMG_HEIGHT, IMG_WIDTH)
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=lr)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=lr)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(lr)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(lr, OPT_MOMENTUM)
# Create the Model/ contruct the graph
if args.train_single_epoch:
# When training using a single epoch then there is no need for data augmentation
model = Model(x, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, attr=attr)
else:
model = Model(x_aug, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, x_test=x, attr=attr)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=100)
runs, task_labels_dataset = train_task_sequence(model, sess, saver, datasets, CUB_attr, classes_per_task, args.cross_validate_mode,
args.train_single_epoch, args.do_sampling, args.is_herding, args.mem_size, args.train_iters,
args.batch_size, args.num_runs, args.init_checkpoint, args.online_cross_val, args.random_seed)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
print('Time spent: {}'.format(time_spent))
# Clean up
del model
if args.cross_validate_mode:
# If cross-validation flag is enabled, store the stuff in a text file
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_CUB_%s_%s'%(imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.is_herding, args.arch, lr, synap_stgth, runs))
else:
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()