This repository has been archived by the owner on Jul 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathclassy_train.py
executable file
·189 lines (149 loc) · 6.12 KB
/
classy_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This is the main script used for training Classy Vision jobs.
This can be used for training on your local machine, using CPU or GPU, and
for distributed training. This script also supports Tensorboard, Visdom and
checkpointing.
Example:
For training locally, simply specify a configuration file and whether
to use CPU or GPU:
$ ./classy_train.py --device gpu --config configs/my_config.json
For distributed training, this can be invoked via
:func:`torch.distributed.launch`. For instance
$ python -m torch.distributed.launch \
--nnodes=1 \
--nproc_per_node=1 \
--master_addr=localhost \
--master_port=29500 \
--use_env \
classy_train.py \
--config=configs/resnet50_synthetic_image_classy_config.json \
--log_freq=100
For other use cases, try
$ ./classy_train.py --help
"""
import logging
import os
from datetime import datetime
from pathlib import Path
import torch
from classy_vision.generic.distributed_util import get_rank, get_world_size
from classy_vision.generic.opts import check_generic_args, parse_train_arguments
from classy_vision.generic.registry_utils import import_all_packages_from_directory
from classy_vision.generic.util import load_json
from classy_vision.hooks import (
CheckpointHook,
LossLrMeterLoggingHook,
ModelComplexityHook,
ProfilerHook,
ProgressBarHook,
TensorboardPlotHook,
VisdomHook,
)
from classy_vision.tasks import build_task, FineTuningTask
from classy_vision.trainer import DistributedTrainer, LocalTrainer
from torchvision import set_image_backend, set_video_backend
try:
import hydra
import omegaconf
hydra_available = True
except ImportError:
hydra_available = False
def main(args, config):
# Global flags
torch.manual_seed(0)
set_image_backend(args.image_backend)
set_video_backend(args.video_backend)
task = build_task(config)
# Load checkpoint, if available.
if args.checkpoint_load_path:
task.set_checkpoint(args.checkpoint_load_path)
# Load a checkpoint contraining a pre-trained model. This is how we
# implement fine-tuning of existing models.
if args.pretrained_checkpoint_path:
assert isinstance(
task, FineTuningTask
), "Can only use a pretrained checkpoint for fine tuning tasks"
task.set_pretrained_checkpoint(args.pretrained_checkpoint_path)
# Configure hooks to do tensorboard logging, checkpoints and so on.
# `configure_hooks` adds default hooks, while extra hooks can be specified
# in config file and stored in `task.hooks`. Here, we merge them when we
# set the final hooks of the task.
task.set_hooks(configure_hooks(args, config) + task.hooks)
# LocalTrainer is used for a single replica. DistributedTrainer will setup
# training to use PyTorch's DistributedDataParallel.
trainer_class = {"none": LocalTrainer, "ddp": DistributedTrainer}[
args.distributed_backend
]
trainer = trainer_class()
logging.info(
f"Starting training on rank {get_rank()} worker. "
f"World size is {get_world_size()}"
)
# That's it! When this call returns, training is done.
trainer.train(task)
output_folder = Path(args.checkpoint_folder).resolve()
logging.info("Training successful!")
logging.info(f'Results of this training run are available at: "{output_folder}"')
def configure_hooks(args, config):
hooks = [LossLrMeterLoggingHook(args.log_freq), ModelComplexityHook()]
# Make a folder to store checkpoints and tensorboard logging outputs
suffix = datetime.now().isoformat()
base_folder = f"{Path(__file__).parent}/output_{suffix}"
if args.checkpoint_folder == "":
args.checkpoint_folder = base_folder + "/checkpoints"
os.makedirs(args.checkpoint_folder, exist_ok=True)
logging.info(f"Logging outputs to {base_folder}")
logging.info(f"Logging checkpoints to {args.checkpoint_folder}")
if not args.skip_tensorboard:
try:
from torch.utils.tensorboard import SummaryWriter
os.makedirs(Path(base_folder) / "tensorboard", exist_ok=True)
tb_writer = SummaryWriter(log_dir=Path(base_folder) / "tensorboard")
hooks.append(TensorboardPlotHook(tb_writer))
except ImportError:
logging.warning("tensorboard not installed, skipping tensorboard hooks")
args_dict = vars(args)
args_dict["config"] = config
hooks.append(
CheckpointHook(
args.checkpoint_folder, args_dict, checkpoint_period=args.checkpoint_period
)
)
if args.profiler:
hooks.append(ProfilerHook())
if args.show_progress:
hooks.append(ProgressBarHook())
if args.visdom_server != "":
hooks.append(VisdomHook(args.visdom_server, args.visdom_port))
return hooks
if hydra_available:
@hydra.main(config_path="hydra_configs", config_name="args")
def hydra_main(cfg):
args = cfg
check_generic_args(cfg)
config = omegaconf.OmegaConf.to_container(cfg.config)
main(args, config)
# run all the things:
if __name__ == "__main__":
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.info("Classy Vision's default training script.")
# This imports all modules in the same directory as classy_train.py
# Because of the way Classy Vision's registration decorators work,
# importing a module has a side effect of registering it with Classy
# Vision. This means you can give classy_train.py a config referencing your
# custom module (e.g. my_dataset) and it'll actually know how to
# instantiate it.
file_root = Path(__file__).parent
import_all_packages_from_directory(file_root)
if hydra_available:
hydra_main()
else:
args = parse_train_arguments()
config = load_json(args.config_file)
main(args, config)