forked from Wenyueh/LLM-RecSys-ID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CID_generation.py
510 lines (449 loc) · 17.1 KB
/
CID_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import time
import networkx as nx
from collections import defaultdict, Counter
from itertools import combinations
from sklearn.cluster import SpectralClustering
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import json
from numpy import linalg as LA
import scipy
from scipy.sparse import csgraph
import math
from scipy.sparse.linalg import eigsh
import random
from tqdm import tqdm
import json
def composite_function(f, g):
return lambda x: f(g(x))
########### data preprocessing ###########
with open("remapped_sequential_data.txt", "r") as f:
data = f.read()
data = data.split("\n")[:-1]
data = [d.split(" ")[1:-2] for d in data]
words = [[int(one_d) - 1 for one_d in d] for d in data]
original_vocab = set([a for one_word in words for a in one_word])
print("compute item pair frequency")
# compute pairs
pair_freqs = defaultdict(int)
for word in words:
pairs = combinations(word, 2)
for pair in pairs:
pair_freqs[tuple(pair)] += 1
sorted_pair_freqs = sorted(pair_freqs.items(), key=lambda x: x[1], reverse=True)
print("compute item frequency")
# compute single item occurrences
occurrences = Counter([a for one_word in words for a in one_word])
occurrences = sorted(occurrences.items(), key=lambda x: x[1], reverse=True)
matrix_size = len(occurrences)
print("compute adjacency matrix")
adjacency_matrix = np.zeros((matrix_size, matrix_size))
for pair, freq in sorted_pair_freqs:
# if pair[0] < 2000 and pair[1] < 2000:
adjacency_matrix[pair[0], pair[1]] = freq
adjacency_matrix[pair[1], pair[0]] = freq
###### apply clustering for the first time, k and N are up to change
maximum_cluster_size = 500
number_of_clusters = 20 # can try 10 & 20 & 30
# here adjacency matrix is the affinity matrix
begin_time = time.time()
clustering = SpectralClustering(
n_clusters=number_of_clusters,
assign_labels="cluster_qr",
random_state=0,
affinity="precomputed",
).fit(adjacency_matrix)
end_time = time.time()
used_time = end_time - begin_time
print("used time to compute it is {} seconds".format(used_time))
labels = clustering.labels_.tolist()
item_CF_index_map = {i: [str(label)] for i, label in enumerate(labels)}
group_labels = []
for i in range(number_of_clusters):
group_labels.append(labels.count(i))
def one_further_indexing(
which_group,
group_labels,
sorted_pair_freqs,
number_of_clusters,
item_CF_index_map,
reverse_fcts,
mode,
):
# select items in this large cluster
one_subcluster_items = [
item for item, l in enumerate(group_labels) if l == which_group
]
# edges within the subcluster
subcluster_pairs = [
sorted_pair_freq
for sorted_pair_freq in sorted_pair_freqs
if sorted_pair_freq[0][0] in one_subcluster_items
and sorted_pair_freq[0][1] in one_subcluster_items
]
# remap the item indices
item_map = {
old_item_index: i for i, old_item_index in enumerate(one_subcluster_items)
}
reverse_item_map = {
i: old_item_index for i, old_item_index in enumerate(one_subcluster_items)
}
# modify the subcluster pairs by item_map
remapped_subcluster_pairs = [
(
(item_map[subcluster_pair[0][0]], item_map[subcluster_pair[0][1]]),
subcluster_pair[1],
)
for subcluster_pair in subcluster_pairs
]
# create new matrix
sub_matrix_size = len(item_map)
sub_adjacency_matrix = np.zeros((sub_matrix_size, sub_matrix_size))
for pair, freq in remapped_subcluster_pairs:
sub_adjacency_matrix[pair[0], pair[1]] = freq
sub_adjacency_matrix[pair[1], pair[0]] = freq
numberofclusters = number_of_clusters
# clustering
sub_clustering = SpectralClustering(
n_clusters=numberofclusters,
assign_labels="cluster_qr",
random_state=0,
affinity="precomputed",
).fit(sub_adjacency_matrix)
sub_labels = sub_clustering.labels_.tolist()
# remap the index to the actual item
reversal = lambda x: x
for reverse_fct in reverse_fcts:
reversal = composite_function(
reverse_fct, reversal
) # lambda x: reverse_fct(reversal(x))
for i, label in enumerate(sub_labels):
item_CF_index_map[reversal(reverse_item_map[i])].append(str(label))
# concatenate the new reverse function
new_reverse_fcts = [lambda y: reverse_item_map[y]] + reverse_fcts
return sub_labels, remapped_subcluster_pairs, item_CF_index_map, new_reverse_fcts
######### recursive application
level_one = labels
level_two = []
level_three = []
level_four = []
level_five = []
level_six = []
level_seven = []
level_eight = []
N = number_of_clusters
M = maximum_cluster_size
reverse_fcts = [lambda x: x]
for a in range(N):
if level_one.count(a) > M:
(
a_labels,
remapped_a_cluster_pairs,
item_CF_index_map,
level_two_reverse_fcts,
) = one_further_indexing(
a, labels, sorted_pair_freqs, N, item_CF_index_map, reverse_fcts, 2
)
level_two.append((a, a_labels))
for b in range(N):
if a_labels.count(b) > M:
(
b_labels,
remapped_b_cluster_pairs,
item_CF_index_map,
level_three_reverse_fcts,
) = one_further_indexing(
b,
a_labels,
remapped_a_cluster_pairs,
N,
item_CF_index_map,
level_two_reverse_fcts,
3,
)
level_three.append((a, b, b_labels))
for c in range(N):
if b_labels.count(c) > M:
(
c_labels,
remapped_c_cluster_pairs,
item_CF_index_map,
level_four_reverse_fcts,
) = one_further_indexing(
c,
b_labels,
remapped_b_cluster_pairs,
N,
item_CF_index_map,
level_three_reverse_fcts,
4,
)
level_four.append((a, b, c, c_labels))
for d in range(N):
if c_labels.count(d) > M:
(
d_labels,
remapped_d_cluster_pairs,
item_CF_index_map,
level_five_reverse_fcts,
) = one_further_indexing(
d,
c_labels,
remapped_c_cluster_pairs,
N,
item_CF_index_map,
level_four_reverse_fcts,
5,
)
level_five.append((a, b, c, d, d_labels))
for e in range(N):
if d_labels.count(e) > M:
(
e_labels,
remapped_e_cluster_pairs,
item_CF_index_map,
level_six_reverse_fcts,
) = one_further_indexing(
e,
d_labels,
remapped_d_cluster_pairs,
N,
item_CF_index_map,
level_five_reverse_fcts,
6,
)
level_six.append((a, b, c, d, e, e_labels))
for f in range(N):
if e_labels.count(f) > M:
(
f_labels,
remapped_f_cluster_pairs,
item_CF_index_map,
level_seven_reverse_fcts,
) = one_further_indexing(
f,
e_labels,
remapped_e_cluster_pairs,
N,
item_CF_index_map,
level_six_reverse_fcts,
7,
)
level_seven.append(
(a, b, c, d, e, f, f_labels)
)
for g in range(N):
if f_labels.count(g) > M:
(
g_labels,
remapped_g_cluster_pairs,
item_CF_index_map,
level_eight_reverse_fcts,
) = one_further_indexing(
g,
f_labels,
remapped_f_cluster_pairs,
N,
item_CF_index_map,
level_seven_reverse_fcts,
8,
)
level_eight.append(
(
a,
b,
c,
d,
e,
f,
g,
g_labels,
)
)
########### save results here
with open(
"c{}_{}_CF_index.json".format(number_of_clusters, maximum_cluster_size), "w"
) as f:
json.dump(item_CF_index_map, f)
##########################################################
###### apply indexing method 1 , described in paper ######
with open(
"c{}_{}_CF_index.json".format(number_of_clusters, maximum_cluster_size), "r"
) as f:
data = json.load(f)
###### check repetition
count = {}
for k, v in data.items():
if tuple(v) not in count:
count[tuple(v)] = 1
else:
count[tuple(v)] += 1
for k, v in count.items():
if v > maximum_cluster_size:
print(k)
print(v)
###### enumerate all categories and subcategories
new_data = {}
for k, v in data.items():
ids = []
for i in range(len(v)):
id = "-".join(v[: i + 1])
ids.append(id)
new_data[k] = ids
###### need to order the categories before indexing, otherwise may create repetitive indices
ordered_positions = []
for i in tqdm(range(max([len(v) for v in new_data.values()]))):
one_layer_positions = []
for k, v in new_data.items():
if len(v) > i:
if v[i] not in one_layer_positions:
one_layer_positions.append(v[i])
one_layer_positions = sorted(one_layer_positions)
ordered_positions += one_layer_positions
###### actually wrte the indices
start = 0
renumber_map = {}
for p in ordered_positions:
renumber_map[p] = start % maximum_cluster_size
start += 1
renumbered_data = {k: [renumber_map[item] for item in v] for k, v in new_data.items()}
# check repetition
count = {}
for k, v in renumbered_data.items():
if tuple(v) not in count:
count[tuple(v)] = 1
else:
count[tuple(v)] += 1
for k, v in count.items():
if v > maximum_cluster_size:
print(k)
print(v)
regroup = [(k, v) for k, v in renumbered_data.items()]
regroup = sorted(regroup, key=lambda x: x[1])
###### add final token, to differentiate items within the same cluster
final_data = {}
start = 0
for k, v in regroup:
if count[tuple(v)] > 1:
final_data[k] = v + [start % maximum_cluster_size]
start += 1
else:
final_data[k] = v
###### check repetition
final_count = {}
for k, v in final_data.items():
if tuple(v) not in final_count:
final_count[tuple(v)] = 1
else:
final_count[tuple(v)] += 1
for k, v in final_count.items():
if v > 1:
print(k)
print(v)
###### save result
with open("computed_optimal_{}_CF_index.json".format(maximum_cluster_size), "w") as f:
json.dump(final_data, f)
###################################################################################
###### apply indexing method 2, no repetition in cluster nodes and leaf node ######
with open(
"c{}_{}_CF_index.json".format(number_of_clusters, maximum_cluster_size), "r"
) as f:
data = json.load(f)
###### check repetition
count = {}
for k, v in data.items():
if tuple(v) not in count:
count[tuple(v)] = 1
else:
count[tuple(v)] += 1
for k, v in count.items():
if v > maximum_cluster_size:
print(k)
print(v)
# no repetition in non-leaf node, but usually will not exceed maximum_cluster_size in total
reformed_item_CF_index_map = {}
for item, labels in data.items():
reformed_item_CF_index_map[item] = [
"-".join(labels[: i + 1]) for i in range(len(labels))
]
###### actually wrte the indices
enumeration_by_group = {}
full_index = {}
vocab = []
for item, clusters in reformed_item_CF_index_map.items():
if tuple(clusters) not in enumeration_by_group:
full_index[item] = "".join(
["<A" + c + ">" for c in clusters] + ["<A0" + str(0) + ">"]
)
enumeration_by_group[tuple(clusters)] = 1
vocab += ["<A" + c + ">" for c in clusters] + ["<A0" + str(0) + ">"]
else:
full_index[item] = "".join(
["<A" + c + ">" for c in clusters]
+ ["<A0" + str(enumeration_by_group[tuple(clusters)]) + ">"]
)
vocab += ["<A" + c + ">" for c in clusters] + [
"<A0" + str(enumeration_by_group[tuple(clusters)]) + ">"
]
enumeration_by_group[tuple(clusters)] += 1
###### save result
with open(
"computed_{}_{}_CF_index.json".format(
number_of_clusters, maximum_cluster_size
),
"w",
) as f:
json.dump([full_index, vocab], f)
#####################################
###### apply indexing CID +IID ######
with open(
"c{}_{}_CF_index.json".format(number_of_clusters, maximum_cluster_size), "r"
) as f:
data = json.load(f)
###### check repetition
count = {}
for k, v in data.items():
if tuple(v) not in count:
count[tuple(v)] = 1
else:
count[tuple(v)] += 1
for k, v in count.items():
if v > maximum_cluster_size:
print(k)
print(v)
# no repetition in non-leaf node, but will not exceed maximum_cluster_size in total
# & add final token, distinguish it from other indices by the starting of 0
final_data = {}
met_category = {}
for k, v in data.items():
if count[tuple(v)] > 1:
if tuple(v) in met_category:
met_category[tuple(v)] += 1
else:
met_category[tuple(v)] = 0
i = met_category[tuple(v)]
final_data[k] = v + ["0" + k]
else:
final_data[k] = v
###### actually write the indices
computed_data = {}
vocabulary = []
for k, v in final_data.items():
final_string = ""
for i in range(len(v)):
if i != len(v) - 1:
final_string += "<A{}>".format("-".join(v[: i + 1]))
vocabulary.append("<A{}>".format("-".join(v[: i + 1])))
else:
final_string += "<A{}>".format(v[i])
vocabulary.append("<A{}>".format(v[i]))
computed_data[k] = final_string
###### save result
with open(
"computed_no_repetition_{}_{}_CF_index.json".format(
number_of_clusters, maximum_cluster_size
),
"w",
) as f:
json.dump([computed_data, vocabulary], f)