Skip to content

Commit

Permalink
Merge pull request #5996 from uwanny/EdAcc-dataset
Browse files Browse the repository at this point in the history
EDACC dataset automatic speech recognition
  • Loading branch information
ftshijt authored Jan 2, 2025
2 parents 964b19e + 2fe91b4 commit ef6740c
Show file tree
Hide file tree
Showing 23 changed files with 854 additions and 0 deletions.
1 change: 1 addition & 0 deletions egs2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ See: https://espnet.github.io/espnet/espnet2_tutorial.html#recipes-using-espnet2
| dns_ins21 | Deep Noise Suppression Challenge – INTERSPEECH 2021 | SE | 11 languages + singing| https://www.microsoft.com/en-us/research/academic-program/deep-noise-suppression-challenge-interspeech-2021/ | |
| dsing | Automatic Lyric Transcription from Karaoke Vocal Tracks (From DAMP Sing300x30x2) | ASR (ALT) | ENG singing | https://github.com/groadabike/Kaldi-Dsing-task | |
| easycom | An Augmented Reality Dataset to Support Algorithms for Easy Communication in Noisy Classification | ASR | ENG | https://github.com/facebookresearch/EasyComDataset | |
| edacc | THE EDINBURGH INTERNATIONAL ACCENTS OF ENGLISH CORPUS | ASR | ENG | https://groups.inf.ed.ac.uk/edacc/index.html#contribute-section | |
| esc50 | Dataset for Environmental Sound Classification | Audio Classification | | https://github.com/karolpiczak/ESC-50 | |
| fisher_callhome_spanish | Fisher and CALLHOME Spanish--English Speech Translation | ASR/ST | SPA->ENG | https://catalog.ldc.upenn.edu/LDC2014T23 | |
| fleurs | Few-shot Learning Evaluation of Universal Representations of Speech | ASR/Multilingual | 102 languages | https://huggingface.co/datasets/google/fleurs | |
Expand Down
1 change: 1 addition & 0 deletions egs2/TEMPLATE/asr1/db.sh
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,7 @@ HIFITTS=downloads
CLOTHO_V2=downloads
AUDIOCAPS=
CLOTHO_CHATGPT_MIXUP=
EDACC=downloads

# For only CMU TIR environment
if [[ "$(hostname)" == tir* ]]; then
Expand Down
178 changes: 178 additions & 0 deletions egs2/edacc/asr1/README.md

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions egs2/edacc/asr1/asr.sh
110 changes: 110 additions & 0 deletions egs2/edacc/asr1/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~


# Select the backend used by run.sh from "local", "stdout", "sge", "slurm", or "ssh"
cmd_backend='local'

# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then

# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"

# Local machine logging to stdout and log file, without any Job scheduling system
elif [ "${cmd_backend}" = stdout ]; then

# The other usage
export train_cmd="stdout.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="stdout.pl"
# Used for "*_recog.py"
export decode_cmd="stdout.pl"


# "qsub" (Sun Grid Engine, or derivation of it)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.

export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"


# "qsub" (Torque/PBS.)
elif [ "${cmd_backend}" = pbs ]; then
# The default setting is written in conf/pbs.conf.

export train_cmd="pbs.pl"
export cuda_cmd="pbs.pl"
export decode_cmd="pbs.pl"


# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partition" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".

export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"

elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.

export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"

# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then

export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/queue.conf"
export decode_cmd="queue.pl --mem 4G"

else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
6 changes: 6 additions & 0 deletions egs2/edacc/asr1/conf/decode_asr.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
beam_size: 10
ctc_weight: 0.3
lm_weight: 0.0
maxlenratio: 0.0
minlenratio: 0.0
penalty: 0.0
2 changes: 2 additions & 0 deletions egs2/edacc/asr1/conf/fbank.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
--sample-frequency=16000
--num-mel-bins=80
11 changes: 11 additions & 0 deletions egs2/edacc/asr1/conf/pbs.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Default configuration
command qsub -V -v PATH -S /bin/bash
option name=* -N $0
option mem=* -l mem=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l ncpus=$0
option num_threads=1 # Do not add anything to qsub_opts
option num_nodes=* -l nodes=$0:ppn=1
default gpu=0
option gpu=0
option gpu=* -l ngpus=$0
1 change: 1 addition & 0 deletions egs2/edacc/asr1/conf/pitch.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
--sample-frequency=16000
12 changes: 12 additions & 0 deletions egs2/edacc/asr1/conf/queue.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -l arch=*64*
option name=* -N $0
option mem=* -l mem_free=$0,ram_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -pe smp $0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
option num_nodes=* -pe mpi $0 # You must set this PE as allocation_rule=1
default gpu=0
option gpu=0
option gpu=* -l gpu=$0 -q g.q
14 changes: 14 additions & 0 deletions egs2/edacc/asr1/conf/slurm.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Default configuration
command sbatch --export=PATH
option name=* --job-name $0
option time=* --time $0
option mem=* --mem-per-cpu $0
option mem=0
option num_threads=* --cpus-per-task $0
option num_threads=1 --cpus-per-task 1
option num_nodes=* --nodes $0
default gpu=0
option gpu=0 -p cpu
option gpu=* -p gpu --gres=gpu:$0 -c $0 # Recommend allocating more CPU than, or equal to the number of GPU
# note: the --max-jobs-run option is supported as a special case
# by slurm.pl and you don't have to handle it in the config file.
91 changes: 91 additions & 0 deletions egs2/edacc/asr1/conf/train_asr_wavlm_transformer.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
freeze_param: [
"frontend.upstream"
]

frontend: s3prl
frontend_conf:
frontend_conf:
upstream: wavlm_base_plus
download_dir: ./hub
multilayer_feature: True

preencoder: linear
preencoder_conf:
input_size: 768 # Note: If the upstream is changed, please change this value accordingly.
output_size: 80

encoder: transformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 1024
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d2
normalize_before: true

decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 4
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1

model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
extract_feats_in_collect_stats: false

seed: 2022
log_interval: 400
num_att_plot: 0
num_workers: 4
sort_in_batch: descending
sort_batch: descending
batch_type: numel
batch_bins: 12000000
accum_grad: 4
max_epoch: 160
patience: none
init: none
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 4

use_amp: true
cudnn_deterministic: false
cudnn_benchmark: false


optim: adam
optim_conf:
lr: 0.008
weight_decay: 0.001
scheduler: warmuplr
scheduler_conf:
warmup_steps: 1000


specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 27
num_freq_mask: 2
apply_time_mask: true
time_mask_width_ratio_range:
- 0.
- 0.05
num_time_mask: 5
1 change: 1 addition & 0 deletions egs2/edacc/asr1/db.sh
105 changes: 105 additions & 0 deletions egs2/edacc/asr1/local/data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
#!/usr/bin/env bash
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail

log() {
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%dT%H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
SECONDS=0


stage=1
stop_stage=100
train_set="dev_train"
valid_set="dev_non_train"
test_set="test"
sub_test_set="test_sub"

log "$0 $*"
. utils/parse_options.sh

. ./db.sh
. ./path.sh
. ./cmd.sh

if [ $# -ne 0 ]; then
log "Error: No positional arguments are required."
exit 2
fi


if [ -z "${EDACC}" ]; then
log "Fill the value of 'EDACC' of db.sh"
exit 1
fi

partitions="${train_set} ${valid_set} ${test_set} ${sub_test_set}"

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
if [ ! -e "${EDACC}/edacc_v1.0/README.txt" ]; then
echo "stage 1: Please download data from https://datashare.ed.ac.uk/handle/10283/4836 and save to ${EDACC}"
else
log "stage 1: ${EDACC}/edacc_v1.0/README.txt is already existing. Skip data downloading"
fi
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
log "stage 2: Data preparation -- preprocess large wav files"

# deal with too large wav file in data folder
audio_path="${EDACC}/edacc_v1.0/data/EDACC-C30.wav"
output_dir="${EDACC}/edacc_v1.0/data/segmentation"
mkdir -p "$output_dir"

if [ -f "$audio_path" ]; then
# segment at 1883 second
ffmpeg -i "$audio_path" -ss 0 -t 1883 "$output_dir/EDACC-C30_P1.wav"
ffmpeg -i "$audio_path" -ss 1883 -c copy "$output_dir/EDACC-C30_P2.wav"

echo "Audio file successfully split into:"
echo " - $output_dir/EDACC-C30_P1.wav"
echo " - $output_dir/EDACC-C30_P2.wav"
else
echo "File $audio_path not found. Please check the file path."
exit 1
fi
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
log "stage 3: Data preparation -- prepare kaldi files, generate ${train_set},
${valid_set}, ${test_set}, ${sub_test_set}"

# prepare the date in Kaldi style, output will be "dev" folder and "test" folder in "data" folder
python3 local/data_prep.py "${EDACC}/edacc_v1.0" "data" "${output_dir}"

# # (optional) split the too long test utterance used for decoding section if necessary,
# # the alignment is based on CTC segmentation tool
# python3 local/truncate_test.py "data/test"

# make training data from dev, as original data has no training data
utils/subset_data_dir.sh --utt-list data/train_utterlist data/dev "data/${train_set}"
utils/subset_data_dir.sh --utt-list data/valid_utterlist data/dev "data/${valid_set}"

# make a sub test set from test set
utils/subset_data_dir.sh --first data/test 500 "data/${sub_test_set}"

# sort the data, and make utt2spk to spk2utt
for x in ${partitions}; do
for f in text wav.scp utt2spk segments; do
sort data/${x}/${f} -o data/${x}/${f}
done
utils/utt2spk_to_spk2utt.pl data/${x}/utt2spk > data/${x}/spk2utt
done

# Validate data
for x in ${partitions}; do
utils/validate_data_dir.sh --no-feats "data/${x}"
done
fi


log "Successfully finished. [elapsed=${SECONDS}s]"
Loading

0 comments on commit ef6740c

Please sign in to comment.