This is a repository for storing ONNX models.
-
BVLC AlexNet (217 MByte)
-
BVLC GoogleNet (26 MByte)
-
BVLC CaffeNet (217 MByte)
-
BVLC R-CNN ILSVRC13 (206 MByte)
-
DenseNet-121 (31 MByte)
-
Inception-v1 (26 MByte)
-
Inception-v2 (41 MByte)
-
ResNet-50 (92 MByte)
-
ShuffleNet (6.7 MByte)
-
SqueezeNet (6.0 MByte)
-
VGG-16 (310 MByte)
-
VGG-19 (510 MByte)
-
MNIST (26 kByte)
Every ONNX backend should support running these models out of the box. After dowloading and extracting the tarball of each model, there should be
- A protobuf file
model.onnx
which is the serialized ONNX model. - Several sets of sample inputs and outputs files (
test_data_*.npz
), they are numpy serialized archive.
e.g. they can be used like this:
import numpy as np
import onnx
import onnx_backend as backend
# Load the model and sample inputs and outputs
model = onnx.load(model_pb_path)
sample = np.load(npz_path, encoding='bytes')
inputs = list(sample['inputs'])
outputs = list(sample['outputs'])
# Run the model with an onnx backend and verify the results
np.testing.assert_almost_equal(outputs, backend.run_model(model, inputs))