-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathread_results.py
123 lines (89 loc) · 3.22 KB
/
read_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import os
import json
import glob
import matplotlib.pyplot as plt
datasets_checked=['caltech-101',
'cifar-10',
'cifar-100',
'country211',
'dtd',
'eurosat_clip',
'fer-2013',
'fgvc-aircraft-2013b-variants102',
'food-101',
'gtsrb',
'hateful-memes',
'kitti-distance',
'mnist',
'oxford-flower-102',
'oxford-iiit-pets',
'patch-camelyon',
# 'ping-attack-on-titan-plus',
# 'ping-whiskey-plus',
'rendered-sst2',
'resisc45_clip',
'stanford-cars',
'voc-2007-classification',
# 'imagenet-1k'
]
two_lr = ['', 'two_lr']
def read_json(log_path, dataset_name='', file_prefix=''):
# print(dataset_names)
datasets, accs, num_para = [], [], []
# Returns a list of names in list files.
log_path = os.path.join(log_path, dataset_name)
file_filter = file_prefix + f'*.txt'
txt_path = os.path.join(log_path, file_filter)
files = glob.glob(txt_path, recursive = True)
if 'finetuning' in file_prefix and 'two_lr' not in 'finetuning':
files = [f for f in files if 'two_lr' not in 'finetuning']
for file in files:
data = ''
# multiple dict-like string in the file
try:
Lines = open(file, 'r').readlines()
texts = open(file, 'r').read()
data = Lines[-1].strip()
data = data.split(' ')[-1].replace('%', '')
accs.append( float(data) )
parameter_data = texts.strip().split('trainable params: ')[-1].split('M')[0]
num_para.append(parameter_data)
except:
# print(f"Failed at {file}")
continue
return accs, num_para
# finetuning evaluation
def extract_finetune_results(proj_path, dataset_name, num_samples_per_class, rs):
training_mode = ['finetuning'] # ['finetuning', 'linear_probe']
# print(proj_path)
# training_mode = ['linear_probe']
accs = np.zeros([len(training_mode), len(num_samples_per_class)])
for j in range(len(training_mode)):
for i in range(len(num_samples_per_class)):
file_prefix = training_mode[j] + '_' + num_samples_per_class[i] + '_'
clip_results, num_para = read_json(proj_path, dataset_name, file_prefix)
# print(dataset_name)
# print(clip_results)
# print(num_para)
# print(num_para[-1])
accs[j, i] = np.mean(clip_results)
# print(f'{dataset_name}, samples {num_samples_per_class[i]}, {clip_results[-1]}, {rs} ')
try:
print(clip_results[-1])
except:
print('[]')
return accs
proj_path = "../vision_benchmark/compacter"
num_samples_per_class = ['5'] # ['5', '20', '50', 'full']
# random_seeds = ['log_random_0', 'log_random_1', 'log_random_2'] # , 'random_3_sgd','random_4_sgd'
# random_seeds = ['log_random_0']
random_seeds = ['1']
accs_per_dataset_rs = []
for rs in random_seeds:
proj_path_rs = os.path.join(proj_path, rs, 'vitb32_CLIP', 'log')
accs_per_dataset = []
for dataset_name in datasets_checked:
accs = extract_finetune_results(proj_path_rs, dataset_name, num_samples_per_class, rs)
accs_per_dataset.append(accs)
accs_per_dataset_rs.append(accs_per_dataset)