-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathexperiment.py
209 lines (183 loc) · 11.6 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import multiprocessing as mp
import os
import pickle
import numpy as np
from logistic import LogisticSGD
from logistic_parallel import LogisticParallelSGD
from parameters import Parameters
from utils import pickle_it
X, y = None, None
def run_logistic(param):
m = LogisticSGD(param)
res = m.fit(X, y)
print('{} - score: {}'.format(param, m.score(X, y)))
return res
def run_experiment(directory, dataset_pickle, params, nproc=None):
global X, y
if not os.path.exists(directory):
os.makedirs(directory)
pickle_it(params, 'params', directory)
print('load dataset')
with open(dataset_pickle, 'rb') as f:
X, y = pickle.load(f)
print('start experiment')
with mp.Pool(nproc) as pool:
results = pool.map(run_logistic, params)
pickle_it(results, 'results', directory)
print('results saved in "{}"'.format(directory))
def run_parallel_experiment(directory, dataset_pickle, models, cores, baseline, repeat=3):
if not os.path.exists(directory):
os.makedirs(directory)
pickle_it([m(1) for m in models], 'models', directory)
pickle_it(cores, 'cores', directory)
print('load dataset')
with open(dataset_pickle, 'rb') as f:
X, y = pickle.load(f)
print('start experiment')
chronos = np.zeros((len(models), len(cores), repeat))
stop_times = np.zeros((len(models), len(cores), repeat), dtype=int)
for r in range(repeat):
for c_idx, core in enumerate(cores):
for m_idx, model in enumerate(models):
p = model(core)
print("{} - cores {} - repeat {}".format(p, core, r))
m = LogisticParallelSGD(p)
timing, epoch, iteration, losses = m.fit_until(X, y, num_features=X.shape[1], num_samples=X.shape[0],
baseline=baseline)
chronos[m_idx, c_idx, r] = timing
stop_times[m_idx, c_idx, r] = epoch * X.shape[0] + iteration
pickle_it(chronos, 'chronos', directory)
pickle_it(stop_times, 'stop_times', directory)
pickle_it(chronos, 'chronos', directory)
pickle_it(stop_times, 'stop_times', directory)
print('results saved in "{}"'.format(directory))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('experiment', type=str)
parser.add_argument('directory', type=str)
parser.add_argument('--nproc', type=int, default=1)
args = parser.parse_args()
assert args.experiment in ['epsilon-th', 'epsilon-quant', 'epsilon-parallel',
'rcv1-th', 'rcv1-quant', 'rcv1-parallel']
# dataset
if args.experiment.startswith('epsilon'):
dataset = os.path.expanduser('/mlodata1/jb/data/epsilon_normalized_1.pickle')
n, d = 400000, 2000
elif args.experiment.startswith('rcv1'):
dataset = os.path.expanduser('/mlodata1/jb/data/rcv1-test-1.pickle')
n, d = 677399, 47236
# parameters to evaluate
if args.experiment == 'epsilon-th':
params = [
Parameters(name="full-sgd", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2'),
Parameters(name="full-sgd-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=1,
regularizer=1 / n, estimate='(t+tau)^2'),
Parameters(name="top1", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True, take_top=True),
Parameters(name="top1-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=1,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True, take_top=True),
Parameters(name="rand1", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True),
Parameters(name="rand1-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=1,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True),
Parameters(name="rand2", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=2, with_memory=True),
Parameters(name="rand2-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=1,
regularizer=1 / n, estimate='(t+tau)^2', take_k=2, with_memory=True),
Parameters(name="rand3", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=3, with_memory=True),
Parameters(name="rand3-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=1,
regularizer=1 / n, estimate='(t+tau)^2', take_k=3, with_memory=True),
]
elif args.experiment == 'epsilon-quant':
params = [
Parameters(name="full-sgd", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2'),
Parameters(name="qsgd-8bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 8),
Parameters(name="qsgd-4bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 4),
Parameters(name="qsgd-2bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 2),
Parameters(name="qsgd-sqrt-d-bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=44),
Parameters(name="top1", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True, take_top=True),
Parameters(name="rand1", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True),
]
elif args.experiment == 'epsilon-parallel':
models = [
lambda n_cores: Parameters(name="rand1", num_epoch=5, lr_type='constant', initial_lr=.05, n_cores=n_cores,
regularizer=1 / n, take_k=1, with_memory=True, estimate='final'),
lambda n_cores: Parameters(name="top1", num_epoch=5, lr_type='constant', initial_lr=.05, n_cores=n_cores,
regularizer=1 / n, take_k=1, take_top=True, with_memory=True, estimate='final'),
lambda n_cores: Parameters(name="hogwild", num_epoch=5, lr_type='constant', initial_lr=.05, n_cores=n_cores,
regularizer=1 / n, estimate='final'),
]
cores = [1, 2, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24]
baseline = 0.305
elif args.experiment == 'rcv1-th':
params = [
Parameters(name="full-sgd", num_epoch=3, lr_type='decay', initial_lr=2, tau=10,
regularizer=1 / n, estimate='(t+tau)^2'),
Parameters(name="top10", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d / 10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True, take_top=True),
Parameters(name="top10-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True, take_top=True),
Parameters(name="rand10", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d / 10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True),
Parameters(name="rand10-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True),
Parameters(name="rand20", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=20, with_memory=True),
Parameters(name="rand20-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=20, with_memory=True),
Parameters(name="rand30", num_epoch=3, lr_type='decay', initial_lr=2, tau=d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=30, with_memory=True),
Parameters(name="rand30-no-shift", num_epoch=3, lr_type='decay', initial_lr=2, tau=10,
regularizer=1 / n, estimate='(t+tau)^2', take_k=30, with_memory=True),
]
elif args.experiment == 'rcv1-quant':
params = [
Parameters(name="full-sgd", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2'),
Parameters(name="qsgd-8bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 8),
Parameters(name="qsgd-4bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 4),
Parameters(name="qsgd-2bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=2 ** 2),
Parameters(name="qsgd-sqrt-d-bits", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', qsgd_s=217),
Parameters(name="top1", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True, take_top=True),
Parameters(name="rand1", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=1, with_memory=True),
Parameters(name="top10", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True, take_top=True),
Parameters(name="rand10", num_epoch=3, lr_type='decay', initial_lr=2, tau=10 * d,
regularizer=1 / n, estimate='(t+tau)^2', take_k=10, with_memory=True),
]
elif args.experiment == 'rcv1-parallel':
models = [
lambda n_cores: Parameters(name="top100", num_epoch=6, lr_type='decay', initial_lr=2., n_cores=n_cores,
tau=10 / 100 * d,
regularizer=1 / n, estimate='final', take_k=100, take_top=True,
with_memory=True),
lambda n_cores: Parameters(name="rand100", num_epoch=6, lr_type='decay', initial_lr=2., n_cores=n_cores,
tau=10 / 100 * d,
regularizer=1 / n, estimate='final', take_k=100, take_top=False,
with_memory=True),
lambda n_cores: Parameters(name="hogwild", num_epoch=6, lr_type='decay', initial_lr=2., n_cores=n_cores,
tau=10, regularizer=1 / n,
estimate='final'),
]
cores = [1, 2, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24]
baseline = 0.101
if 'parallel' in args.experiment:
run_parallel_experiment(args.directory, dataset, models, cores, baseline, repeat=3)
else:
run_experiment(args.directory, dataset, params, nproc=args.nproc)