This is a controller to scale the specific deployment with various way. This controller can work for multi-cluster.
- If cluster name is given within metric labels, it calculates the rate and scale the workload by cluster name
- If cluster name is given alarm labels, it scales the workload on the specified cluster
- If cluster name is not given, it will only calculate and scale in the same cluster controller lives
Organizing multi-cluster:
- https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
- https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
Constantly, watches the Prometheus API (http://host:port/api/v1/alerts) to
catch the firing alarms. We must have two different alarm rule for scaling out
and scaling in with the following labels.
For example:
prometheus.rules: |-
groups:
- name: Pod Memory
rules:
- alert: php-apache-scaling-out # This must be provided
expr: sum(container_memory_usage_bytes{container="php-apache", namespace="default"}) / (count(container_memory_usage_bytes{container="php-apache", namespace="default"})) > 11000000
for: 1m
labels:
severity: slack
scaling: out # Must include
cluster_name: <cluster_name> # If not specified, it load incluster config
annotations:
summary: High Memory Usage
- alert: php-apache-scaling-in # This must be provided
expr: sum(container_memory_usage_bytes{container="php-apache", namespace="default"}) / (count(container_memory_usage_bytes{container="php-apache", namespace="default"})) < 11000000
for: 1m
labels:
severity: slack
scaling: in # Must include
cluster_name: <cluster_name> # If not specified, it load incluster config
annotations:
summary: Low Memory Usage
Before deploying the pod, define the parameters
env:
- name: workload
value: "Deployment"
- name: scale-name
value: "php-apache"
- name: namespace
value: "default"
- name: scaling-number
value: "1"
- name: max-pod-number
value: "10"
- name: min-pod-number
value: "2"
- name: time-interval
value: "60"
- name: kube-config
value: "/etc/kube/config"
- name: managment-type
value: "prometheus_alert_api"
- name: prometheus-host
value: "prometheus-service"
- name: prometheus-port
value: "8080"
- name: scaling-out-name
value: "php-apache-scaling-out"
- name: scaling-in-name
value: "php-apache-scaling-in"
If you set the alarms, you can simply run this deployment to scale out/in
kubectl apply -f https://raw.githubusercontent.com/eminaktas/k8s-workload-scaler/main/examples/php-apache-sample.yaml
Then,
kubectl apply -f https://raw.githubusercontent.com/eminaktas/k8s-workload-scaler/main/examples/k8s-prometheus-sample.yaml
It will simply chekcs the Prometheus API and if receives a firing alarm it will trigger regarding the scaling type (we must define scaling: in and scaling: out labels)
Reads, calculates and checks for any violation of thresholds to scale out or scale in
env:
- name: workload
value: "Deployment"
- name: scale-name
value: "php-apache"
- name: namespace
value: "default"
- name: scaling-number
value: "1"
- name: max-pod-number
value: "10"
- name: min-pod-number
value: "2"
- name: time-interval
value: "0"
- name: kube-config
value: "/etc/kube/config"
- name: management-type
value: "prometheus_metric_api"
- name: prometheus-host
value: "prometheus-service"
- name: prometheus-port
value: "8080"
- name: metric-name
value: "apache_accesses_total"
- name: label-1
value: "kubernetes_name=apache-exporter"
- name: label-2
value: "run=php-apache"
- name: scaling-out-threshold-value
value: "0.8"
- name: scaling-in-threshold-value
value: "0.2"
- name: rate_value
value: "300" # 5 min
You can simply run this deployment to scale out/in. This includes an apache exporter. After deploying, make sure your Prometheus collecting metrics.
kubectl apply -f https://raw.githubusercontent.com/eminaktas/k8s-workload-scaler/main/examples/php-apache-sample.yaml
Then,
kubectl apply -f https://raw.githubusercontent.com/eminaktas/k8s-workload-scaler/main/examples/k8s-prometheus-metric-sample.yaml
SUPPORTED_WORKLOAD = [
'Deployment',
'StatefulSet',
'ReplicaSet',
'ReplicationController',
]
- Auto-Scaling
- Multi-cluster support
- Prometheus alert api and metric api support