forked from PRBonn/semantic-kitti-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_submission.py
executable file
·180 lines (133 loc) · 7.75 KB
/
validate_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import zipfile
import argparse
import os
import numpy as np
class ValidationException(Exception):
pass
def unpack(compressed):
''' given a bit encoded voxel grid, make a normal voxel grid out of it. '''
uncompressed = np.zeros(compressed.shape[0] * 8, dtype=np.uint8)
uncompressed[::8] = compressed[:] >> 7 & 1
uncompressed[1::8] = compressed[:] >> 6 & 1
uncompressed[2::8] = compressed[:] >> 5 & 1
uncompressed[3::8] = compressed[:] >> 4 & 1
uncompressed[4::8] = compressed[:] >> 3 & 1
uncompressed[5::8] = compressed[:] >> 2 & 1
uncompressed[6::8] = compressed[:] >> 1 & 1
uncompressed[7::8] = compressed[:] & 1
return uncompressed
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Validate a submission zip file needed to evaluate on CodaLab competitions.\n\nThe verification tool checks:\n 1. correct folder structure,\n 2. existence of label files for each scan,\n 3. count of labels for each scan.\nInvalid labels are ignored by the evaluation script, therefore we don't check\nfor invalid labels.", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"zipfile",
type=str,
help='zip file that should be validated.',
)
parser.add_argument(
'dataset',
type=str,
help='directory containing the folder "sequences" containing folders "11", ..., "21" with the input data ("velodyne" or "voxels") folder.'
)
parser.add_argument(
"--task",
type=str,
choices=["segmentation", "completion", "panoptic"],
default="segmentation",
help='task for which the zip file should be validated.'
)
FLAGS, _ = parser.parse_known_args()
checkmark = "\u2713"
float_bytes = 4
uint32_bytes = 4
uint16_bytes = 2
try:
print('Validating zip archive "{}".\n'.format(FLAGS.zipfile))
print( " ============ {:^10} ============ ".format(FLAGS.task))
print(" 1. Checking filename.............. ", end="", flush=True)
if not FLAGS.zipfile.endswith('.zip'):
raise ValidationException('Competition bundle must end with ".zip"')
print(checkmark)
with zipfile.ZipFile(FLAGS.zipfile) as zipfile:
if FLAGS.task == "segmentation" or FLAGS.task == "panoptic":
print(" 2. Checking directory structure... ", end="", flush=True)
directories = [folder.filename for folder in zipfile.infolist() if folder.filename.endswith("/")]
if "sequences/" not in directories:
raise ValidationException('Directory "sequences" missing inside zip file.')
for sequence in range(11, 22):
sequence_directory = "sequences/{}/".format(sequence)
if sequence_directory not in directories:
raise ValidationException('Directory "{}" missing inside zip file.'.format(sequence_directory))
predictions_directory = sequence_directory + "predictions/"
if predictions_directory not in directories:
raise ValidationException('Directory "{}" missing inside zip file.'.format(predictions_directory))
print(checkmark)
print(' 3. Checking file sizes............ ', end='', flush=True)
prediction_files = {info.filename: info for info in zipfile.infolist() if not info.filename.endswith("/")}
for sequence in range(11, 22):
sequence_directory = 'sequences/{}'.format(sequence)
velodyne_directory = os.path.join(FLAGS.dataset, 'sequences/{}/velodyne/'.format(sequence))
velodyne_files = sorted([os.path.join(velodyne_directory, file) for file in os.listdir(velodyne_directory)])
label_files = sorted([os.path.join(sequence_directory, "predictions", os.path.splitext(filename)[0] + ".label")
for filename in os.listdir(velodyne_directory)])
for velodyne_file, label_file in zip(velodyne_files, label_files):
num_points = os.path.getsize(velodyne_file) / (4 * float_bytes)
if label_file not in prediction_files:
raise ValidationException('"' + label_file + '" is missing inside zip.')
num_labels = prediction_files[label_file].file_size / uint32_bytes
if num_labels != num_points:
raise ValidationException('label file "' + label_file +
"' should have {} labels, but found {} labels!".format(int(num_points), int(num_labels)))
print(checkmark)
elif FLAGS.task == "completion":
print(" 2. Checking directory structure... ", end="", flush=True)
directories = [folder.filename for folder in zipfile.infolist() if folder.filename.endswith("/")]
if "sequences/" not in directories:
raise ValidationException('Directory "sequences" missing inside zip file.')
for sequence in range(11, 22):
sequence_directory = "sequences/{}/".format(sequence)
if sequence_directory not in directories:
raise ValidationException('Directory "{}" missing inside zip file.'.format(sequence_directory))
predictions_directory = sequence_directory + "predictions/"
if predictions_directory not in directories:
raise ValidationException('Directory "{}" missing inside zip file.'.format(predictions_directory))
print(checkmark)
print(' 3. Checking file sizes', end='', flush=True)
prediction_files = {str(info.filename): info for info in zipfile.infolist() if not info.filename.endswith("/")}
# description.txt is optional and one should not get an error.
if "description.txt" in prediction_files: del prediction_files["description.txt"]
necessary_files = []
for sequence in range(11, 22):
sequence_directory = 'sequences/{}'.format(sequence)
voxel_directory = os.path.join(FLAGS.dataset, 'sequences/{}/voxels/'.format(sequence))
voxel_files = sorted([os.path.join(voxel_directory, file) for file in os.listdir(voxel_directory) if file.endswith(".bin")])
label_files = sorted([os.path.join(sequence_directory, "predictions", os.path.splitext(filename)[0] + ".label")
for filename in os.listdir(voxel_directory)])
necessary_files.extend(label_files)
for voxel_file, label_file in zip(voxel_files, label_files):
input_voxels = unpack(np.fromfile(voxel_file, dtype=np.uint8))
num_voxels = input_voxels.shape[0] # fixed volume (= 256 * 256 * 32)!
if label_file not in prediction_files:
raise ValidationException('"' + label_file + '" is missing inside zip.')
num_labels = prediction_files[label_file].file_size / uint16_bytes # expecting uint16 for labels.
if num_labels != num_voxels:
raise ValidationException('label file "' + label_file +
"' should have {} labels, but found {} labels!".format(int(num_voxels), int(num_labels)))
print(".", end="", flush=True)
print(". ", end="", flush=True)
print(checkmark)
print(' 4. Checking for unneeded files', end='', flush=True)
if len(necessary_files) != len(prediction_files.keys()):
filelist = sorted([f for f in prediction_files.keys() if f not in necessary_files])
ell = ""
if len(filelist) > 10: ell = ", ..."
raise ValidationException("Zip contains unneeded predictions, e.g., {}".format(",".join(filelist[:10]) + ell))
print(".... " + checkmark)
else:
raise NotImplementedError("Unknown task.")
except ValidationException as ex:
print("\n\n " + "\u001b[1;31m>>> Error: " + str(ex) + "\u001b[0m")
exit(1)
print("\n\u001b[1;32mEverything ready for submission!\u001b[0m \U0001F389")