forked from PRBonn/semantic-kitti-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_completion.py
executable file
·217 lines (171 loc) · 7.13 KB
/
evaluate_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/python3
import argparse
import numpy as np
import scipy.io as sio
import yaml
import os
import time
epsilon = np.finfo(np.float32).eps
def get_eval_mask(labels, invalid_voxels):
"""
Ignore labels set to 255 and invalid voxels (the ones never hit by a laser ray, probed using ray tracing)
:param labels: input ground truth voxels
:param invalid_voxels: voxels ignored during evaluation since the lie beyond the scene that was captured by the laser
:return: boolean mask to subsample the voxels to evaluate
"""
masks = np.ones_like(labels, dtype=np.bool)
masks[labels == 255] = False
masks[invalid_voxels == 1] = False
return masks
def unpack(compressed):
''' given a bit encoded voxel grid, make a normal voxel grid out of it. '''
uncompressed = np.zeros(compressed.shape[0] * 8, dtype=np.uint8)
uncompressed[::8] = compressed[:] >> 7 & 1
uncompressed[1::8] = compressed[:] >> 6 & 1
uncompressed[2::8] = compressed[:] >> 5 & 1
uncompressed[3::8] = compressed[:] >> 4 & 1
uncompressed[4::8] = compressed[:] >> 3 & 1
uncompressed[5::8] = compressed[:] >> 2 & 1
uncompressed[6::8] = compressed[:] >> 1 & 1
uncompressed[7::8] = compressed[:] & 1
return uncompressed
def load_gt_volume(filename):
basename = os.path.os.path.splitext(filename)[0]
labels = np.fromfile(filename, dtype=np.uint16)
invalid_voxels = unpack(np.fromfile(basename + ".invalid", dtype=np.uint8))
return labels, invalid_voxels
def load_pred_volume(filename):
labels = np.fromfile(filename, dtype=np.uint16)
return labels
# possible splits
splits = ["train", "valid", "test"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SSC semantic-kitti")
parser.add_argument(
'--dataset', '-d',
type=str,
required=True,
help='Dataset dir. No Default',
)
parser.add_argument(
'--predictions', '-p',
type=str,
required=None,
help='Prediction dir. Same organization as dataset, but predictions in'
'each sequences "prediction" directory.'
)
parser.add_argument(
'--datacfg', '-dc',
type=str,
required=False,
default="config/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--split', '-s',
type=str,
required=False,
choices=["train", "valid", "test"],
default="valid",
help='Split to evaluate on. One of ' +
str(splits) + '. Defaults to %(default)s',
)
parser.add_argument(
'--output',
dest='output',
type=str,
default=".",
help='Exports "scores.txt" to given output directory for codalab'
'Defaults to %(default)s',
)
args = parser.parse_args()
print(" ========================== Arguments ========================== ")
print("\n".join([" {}:\t{}".format(k,v) for (k,v) in vars(args).items()]))
print(" =============================================================== \n")
gt_data_root = args.dataset
DATA = yaml.safe_load(open(args.datacfg, 'r'))
# get number of interest classes, and the label mappings
class_strings = DATA["labels"]
class_remap = DATA["learning_map"]
class_inv_remap = DATA["learning_map_inv"]
class_ignore = DATA["learning_ignore"]
n_classes = len(class_inv_remap)
test_sequences = DATA["split"][args.split]
# make lookup table for mapping
maxkey = max(class_remap.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut[list(class_remap.keys())] = list(class_remap.values())
# in completion we have to distinguish empty and invalid voxels.
# Important: For voxels 0 corresponds to "empty" and not "unlabeled".
remap_lut[remap_lut == 0] = 255 # map 0 to 'invalid'
remap_lut[0] = 0 # only 'empty' stays 'empty'.
from auxiliary.np_ioueval import iouEval
evaluator = iouEval(n_classes, [])
# get files from ground truth and predictions.
filenames_gt = []
filenames_pred = []
for seq in test_sequences:
seq_dir_gt = os.path.join("sequences", '{0:02d}'.format(int(seq)), "voxels")
seq_dir_pred = os.path.join("sequences", '{0:02d}'.format(int(seq)), "predictions")
gt_file_list = [f for f in os.listdir(os.path.join(args.dataset, seq_dir_gt)) if f.endswith(".label")]
filenames_gt.extend([os.path.join(seq_dir_gt, f) for f in gt_file_list])
filenames_pred.extend([os.path.join(seq_dir_pred, f) for f in gt_file_list])
missing_pred_files = False
# check that all prediction files exist
for pred_file in filenames_pred:
if not os.path.exists(os.path.join(args.predictions, pred_file)):
print("Expected to have {}, but file does not exist!".format(pred_file))
missing_pred_files = True
if missing_pred_files: raise RuntimeError("Error: Missing prediction files! Aborting evaluation.")
evaluation_pairs = list(zip(filenames_gt, filenames_pred))
print("Evaluating: ", end="", flush=True)
progress = 10
for i, f in enumerate(evaluation_pairs):
if 100.0 * i / len(evaluation_pairs) >= progress:
print("{}% ".format(progress), end="", flush=True)
progress = progress + 10
filename_gt = os.path.join(args.dataset, f[0])
filename_pred = os.path.join(args.predictions, f[1])
pred = load_pred_volume(filename_pred)
target, invalid_voxels = load_gt_volume(filename_gt)
# Map labels "pred_labels" and "gt_labels" from semantic-kitti ID's to [0 : n_classes -1]
pred = remap_lut[pred]
target = remap_lut[target]
masks = get_eval_mask(target, invalid_voxels)
target = target[masks]
pred = pred[masks]
# add single scan to evaluation
evaluator.addBatch(pred, target)
print("Done \U0001F389.")
print("\n ========================== RESULTS ========================== ")
# when I am done, print the evaluation
_, class_jaccard = evaluator.getIoU()
m_jaccard = class_jaccard[1:].mean()
print('Validation set:\nIoU avg {m_jaccard:.3f}'.format(m_jaccard=m_jaccard))
ignore = [0]
# print also classwise
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
print('IoU class {i:} [{class_str:}] = {jacc:.3f}'.format(
i=i, class_str=class_strings[class_inv_remap[i]], jacc=jacc))
# compute remaining metrics.
conf = evaluator.get_confusion()
precision = np.sum(conf[1:,1:]) / (np.sum(conf[1:,:]) + epsilon)
recall = np.sum(conf[1:,1:]) / (np.sum(conf[:,1:]) + epsilon)
acc_cmpltn = (np.sum(conf[1:, 1:])) / (np.sum(conf) - conf[0,0])
mIoU_ssc = m_jaccard
print("Precision =\t" + str(np.round(precision * 100, 2)) + '\n' +
"Recall =\t" + str(np.round(recall * 100, 2)) + '\n' +
"IoU Cmpltn =\t" + str(np.round(acc_cmpltn * 100, 2)) + '\n' +
"mIoU SSC =\t" + str(np.round(mIoU_ssc * 100, 2)))
# write "scores.txt" with all information
results = {}
results["iou_completion"] = float(acc_cmpltn)
results["iou_mean"] = float(mIoU_ssc)
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
results["iou_"+class_strings[class_inv_remap[i]]] = float(jacc)
output_filename = os.path.join(args.output, 'scores.txt')
with open(output_filename, 'w') as yaml_file:
yaml.dump(results, yaml_file, default_flow_style=False)