forked from princeton-nlp/LM-BFF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble.py
289 lines (261 loc) · 12.4 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import pandas as pd
import json
import numpy as np
import torch
import os
from torch import device
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset
from transformers import GlueDataTrainingArguments, glue_compute_metrics
from transformers.data.metrics import simple_accuracy
from transformers.data.processors.glue import glue_processors
def get_glue_label(task, line):
if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
line = line.strip().split('\t')
if task == 'CoLA':
return line[1]
elif task == 'MNLI':
return line[-1]
elif task == 'MRPC':
return line[0]
elif task == 'QNLI':
return line[-1]
elif task == 'QQP':
return line[-1]
elif task == 'RTE':
return line[-1]
elif task == 'SNLI':
return line[-1]
elif task == 'SST-2':
return line[-1]
elif task == 'STS-B':
return 0 if float(line[-1]) < 2.5 else 1
elif task == 'WNLI':
return line[-1]
else:
raise NotImplementedError
else:
raise NotImplementedError
def get_labels(data_dir, k, seed, task, print_name):
if print_name in ['sst-5', 'mr', 'cr', 'mpqa', 'subj', 'trec']:
data = pd.read_csv(os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test.csv'), header=None).values.tolist()
labels = np.zeros((len(data)), dtype=np.uint8)
for i, example in enumerate(data):
labels[i] = example[0]
elif print_name in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]:
lines = []
file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test.tsv')
if task == 'mnli':
file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test_matched.tsv')
elif task == 'mnli-mm':
file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test_mismatched.tsv')
for line in open(file_name):
lines.append(line.strip())
if task != 'cola':
lines = lines[1:]
label_list = glue_processors[task]().get_labels()
label_map = {k: i for i, k in enumerate(label_list)}
if task == 'sts-b':
label_map = {0: 0, 1: 1}
label_ids = np.zeros((len(lines)))
for line_id, line in enumerate(lines):
label_ids[line_id] = label_map[get_glue_label(print_name, line)]
return label_ids
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--n_models", type=int, help="Number of models")
parser.add_argument("--k", type=int, default=16, help="Number of training instances per label")
parser.add_argument("--condition", type=str, help="A dictionary contains conditions that the experiment results need to fulfill (e.g., tag, task_name, few_shot_type)")
# These options should usually be kept as their default values
parser.add_argument("--data_dir", type=str, default="data/k-shot", help="Data directory")
parser.add_argument("--save_logit_dir", type=str, default="ensemble_predict_results", help="Directory to store the logit file.")
parser.add_argument("--log", type=str, default="log", help="Log path.")
parser.add_argument("--key", type=str, default='', help="Validation metric name")
parser.add_argument("--test_key", type=str, default="", help="Test metric name")
parser.add_argument("--test_key2", type=str, default="", help="Second test metric name")
args = parser.parse_args()
condition = eval(args.condition)
if len(args.key) == 0:
if condition['task_name'] == 'cola':
args.key = 'cola_dev_eval_mcc'
args.test_key = 'cola_test_eval_mcc'
elif condition['task_name'] == 'mrpc/acc':
args.key = 'mrpc_dev_eval_acc'
args.test_key = 'mrpc_test_eval_acc'
args.test_key2 = 'mrpc_test_eval_f1'
condition['task_name'] = 'mrpc'
elif condition['task_name'] == 'mrpc/f1':
args.key = 'mrpc_dev_eval_f1'
args.test_key2 = 'mrpc_test_eval_acc'
args.test_key = 'mrpc_test_eval_f1'
condition['task_name'] = 'mrpc'
elif condition['task_name'] == 'qqp/acc':
args.key = 'qqp_dev_eval_acc'
args.test_key = 'qqp_test_eval_acc'
args.test_key2 = 'qqp_test_eval_f1'
condition['task_name'] = 'qqp'
elif condition['task_name'] == 'qqp/f1':
args.key = 'qqp_dev_eval_f1'
args.test_key2 = 'qqp_test_eval_acc'
args.test_key = 'qqp_test_eval_f1'
condition['task_name'] = 'qqp'
elif condition['task_name'] == 'sts-b/pearson':
args.key = 'sts-b_dev_eval_pearson'
args.test_key = 'sts-b_test_eval_pearson'
args.test_key2 = 'sts-b_test_eval_spearmanr'
condition['task_name'] = 'sts-b'
elif condition['task_name'] == 'sts-b/spearmanr':
args.key = 'sts-b_dev_eval_spearmanr'
args.test_key2 = 'sts-b_test_eval_pearson'
args.test_key = 'sts-b_test_eval_spearmanr'
condition['task_name'] = 'sts-b'
elif condition['task_name'] == 'qnli':
args.key = 'qnli_dev_eval_acc'
args.test_key = 'qnli_test_eval_acc'
elif condition['task_name'] == 'sst-2':
args.key = 'sst-2_dev_eval_acc'
args.test_key = 'sst-2_test_eval_acc'
elif condition['task_name'] == 'snli':
args.key = 'snli_dev_eval_acc'
args.test_key = 'snli_test_eval_acc'
elif condition['task_name'] == 'mnli':
args.key = 'mnli_dev_eval_mnli/acc'
args.test_key = 'mnli_test_eval_mnli/acc'
elif condition['task_name'] == 'mnli-mm':
args.key = 'mnli_dev_eval_mnli/acc'
args.test_key = 'mnli-mm_test_eval_mnli-mm/acc'
elif condition['task_name'] == 'rte':
args.key = 'rte_dev_eval_acc'
args.test_key = 'rte_test_eval_acc'
elif condition['task_name'] == 'ag_news':
args.key = 'ag_news_dev_eval_acc'
args.test_key = 'ag_news_test_eval_acc'
elif condition['task_name'] == 'yahoo_answers':
args.key = 'yahoo_answers_dev_eval_acc'
args.test_key = 'yahoo_answers_test_eval_acc'
elif condition['task_name'] == 'yelp_review_full':
args.key = 'yelp_review_full_dev_eval_acc'
args.test_key = 'yelp_review_full_test_eval_acc'
elif condition['task_name'] == 'mr':
args.key = 'mr_dev_eval_acc'
args.test_key = 'mr_test_eval_acc'
elif condition['task_name'] == 'sst-5':
args.key = 'sst-5_dev_eval_acc'
args.test_key = 'sst-5_test_eval_acc'
elif condition['task_name'] == 'subj':
args.key = 'subj_dev_eval_acc'
args.test_key = 'subj_test_eval_acc'
elif condition['task_name'] == 'trec':
args.key = 'trec_dev_eval_acc'
args.test_key = 'trec_test_eval_acc'
elif condition['task_name'] == 'cr':
args.key = 'cr_dev_eval_acc'
args.test_key = 'cr_test_eval_acc'
elif condition['task_name'] == 'mpqa':
args.key = 'mpqa_dev_eval_acc'
args.test_key = 'mpqa_test_eval_acc'
else:
raise NotImplementedError
with open(args.log) as f:
result_list = []
for line in f:
result_list.append(eval(line))
seed_result = {}
seed_best = {}
# Gather all logs satisfying the conditions
for item in result_list:
ok = True
for cond in condition:
if cond == 'task_name' and condition['task_name'] == 'mnli-mm':
if cond not in item or item[cond] != 'mnli':
ok = False
break
else:
if cond not in item or item[cond] != condition[cond]:
ok = False
break
if 'model_id' not in item or 'array_id' not in item:
ok = False
if ok:
seed = int(item['data_dir'].split('-')[-1])
model_id = item['model_id']
array_id = item['array_id']
if model_id >= 0 and model_id < args.n_models:
if seed not in seed_result:
seed_result[seed] = {}
seed_best[seed] = {}
if model_id not in seed_result[seed]:
seed_result[seed][model_id] = []
seed_best[seed][model_id] = {args.key: -1e9}
seed_result[seed][model_id].append(item)
if item[args.key] > seed_best[seed][model_id][args.key]:
seed_best[seed][model_id] = item
final_result_dev = np.zeros((len(seed_result), args.n_models))
final_result_test = np.zeros((len(seed_result), args.n_models))
final_result_test2 = np.zeros((len(seed_result), args.n_models))
logit_file_list = {}
for seed in seed_result:
logit_file_list[seed] = []
# Get the results for each model and pick the best dev trial for each model/seed
for model_id in range(args.n_models):
for i, seed in enumerate(seed_result):
final_result_dev[i][model_id] = seed_best[seed][model_id][args.key]
final_result_test[i][model_id] = seed_best[seed][model_id][args.test_key]
if len(args.test_key2) > 0:
final_result_test2[i][model_id] = seed_best[seed][model_id][args.test_key2]
logit_file_list[seed].append("{}-{}-{}.npy".format(condition['task_name'], model_id, seed_best[seed][model_id]["array_id"]))
s = "Model %d | val: mean +- std: %.1f +- %.1f | test: mean +- std: %.1f (%.1f) (median %.1f)" % (model_id, final_result_dev[:, model_id].mean() * 100, final_result_dev[:, model_id].std() * 100, final_result_test[:, model_id].mean() * 100, final_result_test[:, model_id].std() * 100, np.median(final_result_test[:, model_id]) * 100)
if len(args.test_key2) > 0:
s += " / %.1f +- %.1f (median %.1f)" % (final_result_test2[:, model_id].mean() * 100, final_result_test2[:, model_id].std() * 100, np.median(final_result_test2[:, model_id]) * 100)
print(s)
# Map lower-case names to official names (data folder name)
data_dir_mapping = {
'cola': 'CoLA',
'mrpc': 'MRPC',
'qqp': 'QQP',
'sts-b': 'STS-B',
'sst-2': 'SST-2',
'snli': 'SNLI',
'mnli': 'MNLI',
'mnli-mm': 'MNLI',
'rte': 'RTE',
'ag_news': 'ag_news',
'yahoo_answers': 'yahoo_answers',
'yelp_review_full': 'yelp_review_full',
'sst-5': 'sst-5',
'mr': 'mr',
'cr': 'cr',
'mpqa': 'mpqa',
'subj': 'subj',
'trec': 'trec'
}
tokenizer = AutoTokenizer.from_pretrained('roberta-large')
ensemble_result = np.zeros((len(seed_result)))
ensemble_result2 = np.zeros((len(seed_result))) # for second metric
# Ensemble for each seed
for seed_id, seed in enumerate(seed_result):
labels = get_labels(args.data_dir, args.k, seed, condition['task_name'], data_dir_mapping[condition['task_name']])
# Logits
mean_logits = None
for fname in logit_file_list[seed]:
logits = np.load(os.path.join(args.save_logit_dir, fname))
if mean_logits is None:
mean_logits = logits
else:
mean_logits += logits
mean_logits /= len(logit_file_list[seed])
# Compute metrics
preds = mean_logits.argmax(-1)
if condition['task_name'] in ['sst-5', 'mr', 'cr', 'mpqa', 'subj', 'trec']:
metric = {"acc": simple_accuracy(preds, labels)}
else:
metric = glue_compute_metrics(condition['task_name'], preds, labels)
ensemble_result[seed_id] = metric[args.test_key.split('_')[-1]]
if len(args.test_key2) > 0:
ensemble_result2[seed_id] = metric[args.test_key2.split('_')[-1]]
s = "mean +- std: %.1f (%.1f) (median %.1f)" % (ensemble_result.mean() * 100, ensemble_result.std() * 100, np.median(ensemble_result) * 100)
if len(args.test_key2) > 0:
s += " / %.1f (%.1f) (median %.1f)" % (ensemble_result2.mean() * 100, ensemble_result2.std() * 100, np.median(ensemble_result2) * 100)
print(s)
if __name__ == '__main__':
main()